Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T23:49:22.094Z Has data issue: false hasContentIssue false

Fabrication of thermally-conductive carbon nanotubes-copper oxide heterostructures

Published online by Cambridge University Press:  29 May 2013

Yuan Li
Affiliation:
Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35401 U.S.A.
Nitin Chopra*
Affiliation:
Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35401 U.S.A.
*
*Corresponding Author E mail: nchopra@eng.ua.edu, Tel: 205-348-4153, Fax: 205-348-2164
Get access

Abstract

A complete dry processing route is developed for the fabrication of thermally-conductive carbon nanotube (CNT)-copper oxide (CuOx) heterostructures. This was achieved by the deposition of copper (Cu) onto CNTs and subsequent annealing in Ar and air environment to convert the coated Cu into CuOx nanoparticles. The survivability and diameters of CNTs were studied to ensure their integrity after the multiple processing steps and annealing temperatures (400 °C). The as-produced CNTs, air/Ar-annealed CNTs, Cu-coated CNTs, and CNT-CuOx heterostructures were characterized to study their structure, phase, and morphology using microscopy, elemental analysis, X-ray diffraction, and sheet resistance. It was observed that CNTs could survive the processing conditions and became coated with CuOx nanoparticles. The sheet resistance of CNTs coated with CuOx nanoparticles was ∼4 times greater than the as-produced CNTs. The Raman spectroscopy-based estimation of thermal conductivity of CNTs and CNT-CuOx heterostructures showed 2-7 times enhancement for the latter as compared to pure CuOx. In conclusion, such hybrid CNT-based heterostructures are promising for applications in thermal management.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Breuer, O., and Sundararaj, U., Polym. Compos. 25, 630 (2004).CrossRefGoogle Scholar
Artukovic, E., Kaempgen, M., Hecht, D., Roth, S., and Gruner, G., Nano Lett. 5, 757 (2005).CrossRefGoogle Scholar
Ajayan, P. M., Schadler, L. S., Giannaris, C., Rubio, A., Adv. Mater. 12, 750 (2000).3.0.CO;2-6>CrossRefGoogle Scholar
Geim, A. K., and Novoselov, K. S., Nature Mater. 6, 183 (2007).CrossRefGoogle Scholar
Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K., Ikuta, T., Abe, H., and Shimizu, T., Phys. Rev. Lett. 95, 065502 (2005).CrossRefGoogle Scholar
Pop, E., Mann, D., Wang, Q., Goodson, K., and Dai, H., Nano Lett. 6, 96 (2006).CrossRefGoogle Scholar
Liu, C. H. and Fan, S. S., Appl. Phys. Lett. 86, 123106 (2005).CrossRefGoogle Scholar
Shenogin, S., Bodapati, A., Xue, L., and Ozisik, R., Appl. Phys. Lett. 85, 2229 (2004).CrossRefGoogle Scholar
Namburu, P. K., Praveen, P. K., and Debasmita, M., Exp. Therm. Fluid Sci. 32, 397 (2007).CrossRefGoogle Scholar
Chopra, N., Hu, B., and Hinds, B.J., J. Mater. Res. 22, 2691 (2007).CrossRefGoogle Scholar
Jang, S. P., and Stephen, U. C., Appl. Therm. Eng. 26, 2457 (2006).CrossRefGoogle Scholar
Chopra, N., Shi, W., and Bansal, A., Carbon, 49, 3645 (2011).CrossRefGoogle Scholar
Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C. N., Nano Lett. 8, 902 (2008).CrossRefGoogle Scholar
Cai, W., Moore, A. L., Zhu, Y., Li, X., Chen, S., and Shi, L., Nano Lett. 10, 1645 (2010).CrossRefGoogle Scholar
Kim, D., Zhu, L., Han, C., Kim, J., and Baik, S., Langmuir 27, 14532 (2011).CrossRefGoogle Scholar
Butrymowicz, D. B., Manning, J. R., and M.l E. Read, J. Phys. Chem. Ref. Data 2, 643 (1973).CrossRefGoogle Scholar
Yakunin, G.. J. Mater. Chem. 7 2085 (1997).Google Scholar
Shi, W., and Chopra, N., J. Nanopart. Res. 13, 851 (2011).CrossRefGoogle Scholar
Kwak, K., and Kim, C., Korea-Aust. Rheol. J. 17, 35 (2005).Google Scholar
Schreck, S. and Rohde, M.. In SPIE LASE: Lasers and Applications in Science and Engineering, 72020A (2009).Google Scholar