Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T08:23:47.712Z Has data issue: false hasContentIssue false

Selective Deposition of Two-Dimensional Colloidal Arrays on Patterned Polyelectrolyte Multilayer Templates

Published online by Cambridge University Press:  17 March 2011

Haipeng Zheng
Affiliation:
Department of Chemical Engineering and Department of Materials Science and Engineering, The Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
Ilsoon Lee
Affiliation:
Department of Chemical Engineering and Department of Materials Science and Engineering, The Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
Michael F. Rubner
Affiliation:
Department of Chemical Engineering and Department of Materials Science and Engineering, The Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
Paula T. Hammond
Affiliation:
Department of Chemical Engineering and Department of Materials Science and Engineering, The Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
Get access

Abstract

A new method for the patterning of colloidal particles on polymer templates is presented. A polyelectrolyte multilayer film is deposited onto a chemically patterned monolayer surface, which is further used as a functional template to direct the deposition of charged particles through electrostatic and secondary interactions. After modified by an opposite charged surfactant, the particles change their deposition selectivity from the polyelectrolyte surface to a neutral ethylene glycol monolayer surface. Based on the different selectivity, we have first demonstrated a new approach to direct two component colloidal arrays onto a patterned polyelectrolyte multilayer template.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Xia, Y., Gates, B., Yin, Y., Lu, Y., Adv. Mater. 12, 693 (2000).Google Scholar
[2] Jiang, P., Bertone, J. F., Hwang, K. S., Colvin, V. L., Chem.Mat. 11, 2132 (1999).Google Scholar
[3] Jiang, P., Ostojic, G. N., Narat, R., Mittleman, D.M., Colvin, V. L., Adv.Mater. 13, 389 (2001).Google Scholar
[4] Velev, O. D., Kaler, E. W., Adv. Mater. 12, 531 (2000).Google Scholar
[5] Norris, D. J., Vlasov, Y. A., Adv. Mater. 13, 371 (2001).Google Scholar
[6] Edrington, A. C., Urbas, A. M., DeRege, P., Chen, C. X., Swager, T.M., Hadjichristidis, N., Xenidou, M., Fetters, L. J., Joannopoulos, J. D., Fink, Y., Thomas, E. L., Adv. Mater. 13, 421 (2001).Google Scholar
[7] Joly, S., Kane, R., Radzilowski, L., Wang, T., Wu, A., Cohen, R.E., Thomas, E. L., Rubner, M.F., Langmuir 16, 1354 (2000).Google Scholar
[8] Wang, D., Caruso, F., Adv.Mater. 13, 350 (2001).Google Scholar
[9] Tessier, P., Velev, O. D., Kalambur, A. T., Lenhoff, A. M., Rabolt, J. F.,E. Kaler, W., Adv. Mater. 13, 396 (2001).Google Scholar
[10] Subramania, G., Constant, K., Biswas, R., Sigalas, M. M., Ho, K. M., Adv. Mater. 13, 443 (2001).Google Scholar
[11] Kumar, A., Abbott, N. L., Kim, E., Biebuyck, H. A., Whitesides, G. M., Accounts Chem. Res. 28, 219 (1995).Google Scholar
[12] Chen, K. M., Jiang, X., L. Kimerling, C., Hammond, P. T., Langmuir 16, 7825 (2000).Google Scholar
[13] Clark, S. L., Montague, M. F., Hammond, P. T., Macromolecules 30, 7237 (1997).Google Scholar
[14] Liu, Y., Wang, A., Claus, R. O., Appl. Phys. Lett. 71, 2265 (1997).Google Scholar
[15] Ostrander, J. W., Mamedov, A. A., Kotov, N. A., J. Am. Chem. Soc. 123, 1101 (2001).Google Scholar