Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T16:40:32.064Z Has data issue: false hasContentIssue false

Myriospora, a genus newly reported for Antarctica with a worldwide key to the species

Published online by Cambridge University Press:  26 January 2018

O. W. PURVIS
Affiliation:
Camborne School of Mines, University of Exeter, Penryn, TR10 9EZ, UK. Email:owpurvis@gmail.com
S. FERNÁNDEZ-BRIME
Affiliation:
Department of Botany, Swedish Museum of Natural History, P. O. Box 50007, SE-104 05 Stockholm, Sweden
M. WESTBERG
Affiliation:
Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36 Uppsala, Sweden
M. WEDIN
Affiliation:
Department of Botany, Swedish Museum of Natural History, P. O. Box 50007, SE-104 05 Stockholm, Sweden

Abstract

Myriospora signyensis Purvis, Fdez-Brime, M. Westb. & Wedin is described from Signy Island, South Orkney Islands, Antarctica, where it occurs predominantly on quartz mica schist. This represents the first record of the genus for Antarctica. The distinctive interrupted photobiont arrangement places it within the genus Myriospora (formerly known as the ‘Acarosporasmaragdula group, or Silobia). The new species is characterized by having large, distinctly elevated, sessile apothecia with a prominent margin and a thallus that is usually lobed at the margins and variously orange-red, rust-coloured or brown-pigmented. Molecular phylogenetic analyses inferred with strong support that M. signyensis is closely related to M. scabrida which is similar in having a lobed, imbricate thallus with large and frequently somewhat raised apothecia, but which differs in never being rusty red, by frequently having a larger number of apothecia per areole/squamule and by having a thick and distinctive thalline epinecral layer. Myriospora signyensis is otherwise most similar to M. dilatata but the thallus of M. dilatata is never imbricate-lobate and the ascomata of M. signyensis have larger and more distinctly raised and sessile apothecia. A worldwide key to the 10 species currently recognized in the genus is presented.

Type
Articles
Copyright
© British Lichen Society, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arcadia, L. & Knudsen, K. (2012) The name Myriospora is available for the Acarospora smaragdula group. Opuscula Philolichenum 11: 1925.Google Scholar
Crewe, A. T., Purvis, O. W. & Wedin, M. (2006) Molecular phylogeny of Acarosporaceae (Ascomycota) with focus on the proposed genus Polysporinopsis . Mycological Research 110: 521526.CrossRefGoogle ScholarPubMed
Elix, J. A. & Stocker-Wörgötter, E. (2008) Biochemistry and secondary metabolites. In Lichen Biology (T. H. Nash III, ed.): 104133. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fletcher, A., James, P. W. & Purvis, O. W. (2009) Acarospora A. Massal. (1852). In The Lichens of Great Britain and Ireland (C. W. Smith, A. Aptroot, B. J. Coppins, A. Fletcher, O. L. Gilbert, P. W. James & P. A. Wolseley, eds): 125132. London: British Lichen Society.Google Scholar
Flowerdew, M. J., Daly, J. S. & Riley, T. R. (2007) New Rb-Sr mineral ages temporally link plume events with accretion at the margin of Gondwana. In Antarctica: A Keystone in a Changing World - Online Proceedings of the 10th ISAES, USGS Open-File Report 2007-1047, Short Research Paper 012, (A. K. Cooper & C. R. Raymond, eds) 10.3133/of2007-1047.srp012.CrossRefGoogle Scholar
Fryday, A. M., Ertz, D. & Jørgensen, P. M. (2017) Insights into the genus Austrella (Pannariaceae, Peltigerales), including a new species from the Falkland Islands. Lichenologist 49: 5765.CrossRefGoogle Scholar
Gauslaa, Y. & McEvoy, M. (2005) Seasonal changes in solar radiation drive acclimation of the sun-screening compound parietin in the lichen Xanthoria parietina . Basic Applied Ecology 6: 7582.CrossRefGoogle Scholar
Hattersley-Smith, G. (1991) The History of Place Names in the British Antarctic Territory (British Antarctic Survey Scientific Reports 113). Cambridge: British Antarctic Survey.Google Scholar
Kantvilas, G. & Seppelt, R. (2006) Polysporina frigida sp. nov. from Antarctica. Lichenologist 38: 109113.CrossRefGoogle Scholar
Knudsen, K. (2007) Acarospora . In Lichen Flora of the Greater Sonoran Desert Region, Vol. 3 (T. H. Nash III, C. Gries & F. Bungartz, eds): 138. Tempe, Arizona: Lichens Unlimited, Arizona State University.Google Scholar
Knudsen, K. (2011) A new member of the genus Silobia (Acarosporaceae) from North America. Opuscula Philolichenum 9: 2730.Google Scholar
Knudsen, K. & Bungartz, F. (2014) Myriospora westbergii (Acarosporaceae), a new discovery from the Galapagos Islands, Ecuador. Opuscula Philolichenum 13: 177183.Google Scholar
Knudsen, K., Kokourkova, J. & Westberg, M. (2013) The identity of Sarcogyne hypophaea (Nyl.) Arnold. Opuscula Philolichenum 12: 2326.Google Scholar
Magnusson, A. H. (1929) A monograph of the genus Acarospora . Kungliga Svenska Vetenskapsakademiens Handlingar, Ser. 3 7: 1400.Google Scholar
Mason-Gamer, R. J. & Kellogg, E. A. (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Systematic Biology 45: 524545.CrossRefGoogle Scholar
Mathews, D. H. & Maling, D. H. (1967) The geology of the South Orkney Islands I. Signy Island. Falkland Islands Dependencies Survey Scientific Reports 25: 132.Google Scholar
Orange, A. (2016) Lichens of the Falkland Islands. An Introductory Guide. St Neots, UK & Stanley, Falkland Islands: Falklands Conservation.Google Scholar
Øvstedal, D. O. & Lewis Smith, R. I. (2001) Lichens of Antarctica and South Georgia: A Guide to Their Identification and Ecology. Cambridge: Cambridge University Press.Google Scholar
Posada, D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 12531256.CrossRefGoogle ScholarPubMed
Prieto, M. & Wedin, M. (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS ONE 8: e65576.CrossRefGoogle ScholarPubMed
Purvis, O. W. (2014) Adaptation and interaction of saxicolous crustose lichens with metals. Botanical Studies 55: 23.CrossRefGoogle ScholarPubMed
Purvis, O. W., Kearsley, A., Cressey, G., Crewe, A. T. & Wedin, M. (2008 a) Mineralization in rust-coloured Acarospora . Geomicrobiology Journal 25: 142148.CrossRefGoogle Scholar
Purvis, O. W., Kearsley, A., Cressey, G., Batty, L. C., Jenkins, D. A., Crewe, A. T. & Wedin, M. (2008 b) Mineralization in rust-coloured Acarospora. In Proceedings of the 14th International Conference on Heavy Metals in the Environment, 16–23 November, 2008, Taipei, Taiwan (Z.-S. Chen, D.-Y. Lee & T.-S. Lin, eds): 472–474. Taiwan: Department of Agricultural Chemistry, National Taiwan University.Google Scholar
Purvis, O. W., Convey, P., Flowerdew, M. J., Peat, H. J. & Najorka, J. (2012) Lichens and weathering: importance for soil formation, nutrient cycling and adaptation to environmental change. Geophysical Research Abstracts 14: EGU2012EGU2802, EGU General Assembly 2012.Google Scholar
Purvis, O. W., Convey, P., Flowerdew, M. J., Peat, H. J., Najorka, J. & Kearsley, A. (2013) Iron localization in Acarospora colonizing schist following glacial retreat on Signy Island. Antarctic Science 25: 2430.CrossRefGoogle Scholar
Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. (2014) Tracer v1.6. Available at: http://beast.bio.ed.ac.uk/Tracer.Google Scholar
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539542.CrossRefGoogle ScholarPubMed
Roux, C. (2014) Catalogue des Lichens et Champignons Lichénicoles de France Métropolitaine. Fougères: Henry des Abbayes.Google Scholar
Seppelt, R. D., Nimis, P. L. & Castello, M. (1998) The genus Sarcogyne (Acarosporaceae) in Antarctica. Lichenologist 30: 249258.CrossRefGoogle Scholar
Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 13121313.CrossRefGoogle ScholarPubMed
Storey, B. C. & Meneilly, A. W. (1985) Petrogenesis of metamorphic rocks within a subduction-accretion terrane, Signy Island, South Orkney Islands. Journal of Metamorphic Geology 3: 2142.CrossRefGoogle Scholar
Tanner, P. W. G., Pankhurst, R. J. & Hyden, G. (1982) Radiometric evidence for the age of the subduction complex in the South Orkney and South Shetland Islands, West Antarctic. Journal of the Geological Society 139: 683690.CrossRefGoogle Scholar
Thiers, B. (2017) Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/science/ih/; accessed 27 February 2017.Google Scholar
Wedin, M., Wiklund, E., Crewe, A., Döring, H., Ekman, S., Nyberg, Å., Schmitt, I. & Lumbsch, T. (2005) Phylogenetic relationships of the Lecanoromycetes (Ascomycota) as revealed by analyses of mtSSU and nLSU rDNA sequence data. Mycological Research 109: 159172.CrossRefGoogle ScholarPubMed
Wedin, M., Westberg, M., Crewe, A. T., Tehler, A. & Purvis, O. W. (2009) Species delimitation and evolution of metal bioaccumulation in the lichenized Acarospora smaragdula (Ascomycota, Fungi) complex. Cladistics 25: 161172.CrossRefGoogle ScholarPubMed
Westberg, M., Crewe, A. T., Purvis, O. W. & Wedin, M. (2011) Silobia, a new genus for the Acarospora smaragdula complex (Ascomycota, Acarosporales) and a revision of the group in Sweden. Lichenologist 43: 725.CrossRefGoogle Scholar
Westberg, M., Millanes, A. M., Knudsen, K. & Wedin, M. (2015) Phylogeny of the Acarosporaceae (Lecanoromycetes, Ascomycota, Fungi) and the evolution of carbonized ascomata. Fungal Diversity 73: 145158.CrossRefGoogle Scholar
Wynn-Williams, D. D., Edwards, H. G. M., Newton, E. M. & Holder, J. M. (2002) Pigmentation as a survival strategy for ancient and modern photosynthetic microbes under high ultraviolet stress on planetary surfaces. International Journal of Astrobiology 1: 3949.CrossRefGoogle Scholar