Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T09:01:34.275Z Has data issue: false hasContentIssue false

Thermal and Photolytic Decomposition of Adsorbed Cadmium and Tellurium Alkyls

Published online by Cambridge University Press:  25 February 2011

C.D. Stinespring
Affiliation:
Center for Chemical and Environmental Physics, Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821
A. Freedman
Affiliation:
Center for Chemical and Environmental Physics, Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821
Get access

Abstract

Studies of the thermal and photon-induced surface chemistry of dimethyl cadmium (DMCd) and dimethyl tellurium (DMTe) under ultrahigh vacuum conditions have been performed for substrate temperatures in the range of 133 K to 295 K. Results on GaAs(100) and Si(100) surfaces indicate that for DMTe, the predominant adspecies, dimethyl tellurium, can be photodissociated to a metal adspecies at both 193 and 248 nm. For DHCd, the major adspecies, monomethyl cadmium, is unreactive to photon stimulation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. O'Neill, J.A., Shaw, P., Sanchez, E., Wu, Z. and Osgood, R.M. Jr., “Surface Spectroscopic Studies of Organometallic Deposition,” Mat. Res. Soc. Symp., this volume.Google Scholar
2. Zinck, J.J., Brewer, P.D., Jensen, J.E., Olsen, G.L. and Tuh, L.W., Appl. Phys. Lett. 52, 1434 (1988); J.B. Mullin and S.J.C. Irvine, J. Vac. Sci. Technol. A4, 700 (1986)Google Scholar
3. Tokumitsu, E., Kurow, Y., Kanogai, M. and Takahashi, K., J. Appl. Phys. 55, 3163 (1984).Google Scholar
4. Stinespring, C.D. and Freedman, A., Chem. Phys. Lett 143, 584 (1988).CrossRefGoogle Scholar
5. Stinespring, C.D. and Freedman, A., Appl. Phys. Lett. 52, 1959 (1988).CrossRefGoogle Scholar
6. Wood, R.A. and Hager, R.J., J. Vac. Sci. Technol. A1, 1608 (1983).Google Scholar
7. Jonah, C., Chandra, P., and Bersohn, R., J. Chem Phys. 55, 1903 (1971), C.F. Yu, F. Youngs, K. Tsukiyama, R. Bersohn, and J. Preses, J. Chem. Phys. 85, 1382 (1986).Google Scholar
8. Chen, C.J. and Osgood, R.M., J. Chem. Phys. 81, 327 (1984).Google Scholar
9. Brewer, P.D., Jensen, J.E., Olsen, G.L., Tutt, L.W. and Zinck, J.J., Proc. Mat. Res. Soc. Symp. 101, 327 (1988); P.D. Brewer, Chem. Phys. Lett., 141, 301 (1987).Google Scholar
10. Donnelly, V.M., McCaulley, J.A., McCrary, V.R., Tu, C.W. and Beggy, J.C., “Selective Area Growth of GaAs by Laser Induced Pyrolysis of Absorbed Gallium-Alkyls,” Proc. Mat. Res. Soc. Symp., this volume.Google Scholar
11. Burgess, D., Stair, P.C.,and Weitz, E., J. Vac. Sci. Technol. A4, 1362 (1986); P.C. Stair and E. Weitz, J. Opt. Soc. Am. B4, 255 (1987).Google Scholar
12. Kolodziejski, L.A., Gunshor, R.L., Otsuka, N., Datta, S., Becker, W.M. and Nurmikko, A.V., IEEE J. Quantum Electron. QE–22, 1666 (1986).CrossRefGoogle Scholar
13. Henzier, M., Surface Sci. 36, 109 (1973).Google Scholar
14. Mady, T.E., Yates, J.T. and Erickson, N.E., Chem. Phys. Lett. 19, 487 (1973).CrossRefGoogle Scholar
15. Wedler, G. and Klemperer, W.F., Chemisorption: An Experimental Avproach (Butterworths, London, 1976).Google Scholar