Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T00:47:30.478Z Has data issue: false hasContentIssue false

Biological damage due to photospheric, chromospheric and flare radiation in the environments of main-sequence stars

Published online by Cambridge University Press:  26 February 2010

Manfred Cuntz
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, TX 76019-0059, USA email: cuntz@uta.edu
Edward F. Guinan
Affiliation:
Department of Astronomy and Astrophysics, Villanova University, Villanova, PA 19085, USA email: edward.guinan@villanova.edu
Robert L. Kurucz
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA email: rkurucz@cfa.harvard.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We explore the biological damage initiated in the environments of F, G, K, and M-type main-sequence stars due to photospheric, chromospheric and flare radiation. The amount of chromospheric radiation is, in a statistical sense, directly coupled to the stellar age as well as the presence of significant stellar magnetic fields and dynamo activity. With respect to photospheric radiation, we also consider detailed synthetic models, taking into account millions or hundred of millions of lines for atoms and molecules. Chromospheric UV radiation is increased in young stars in regard to all stellar spectral types. Flare activity is most pronounced in K and M-type stars, which also has the potential of stripping the planetary atmospheres of close-in planets, including planets located in the stellar habitable zone. For our studies, we take DNA as a proxy for carbon-based macromolecules, guided by the paradigm that carbon might constitute the biochemical centerpiece of extraterrestrial life forms. Planetary atmospheric attenuation is considered in an approximate manner.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Ayres, T. R. 1997, J. Geophys. Res. 102 (E1), 1641CrossRefGoogle Scholar
Buccino, A. P., Lemarchand, G. A., & Mauas, P. J. D. 2006, Icarus, 183, 491CrossRefGoogle Scholar
Buchholz, B., Ulmschneider, P., & Cuntz, M. 1998, ApJ, 494, 700CrossRefGoogle Scholar
Castelli, F. & Kurucz, R. L. 2004, in Piskunov, N. E., Weiss, W. W. & Gray, D. F. (eds.), Modelling of Stellar Atmospheres, IAU Symp. 210 (Astr. Soc. Pac., San Francisco), CD-ROM, Poster 20Google Scholar
Charbonneau, P. & MacGregor, K. B. 1993, ApJ, 417, 762CrossRefGoogle Scholar
Cockell, C. S. 1999, Icarus, 141, 399CrossRefGoogle Scholar
Cockell, C. S. 2002, in Horneck, G. & Baumstark-Khan, C. (eds.), Astrobiology: The Quest for the Conditions of Life (Springer, Berlin), p. 219CrossRefGoogle Scholar
Cuntz, M., Ulmschneider, P., & Musielak, Z. E. 1998, ApJ (Letters), 493, L117CrossRefGoogle Scholar
Cuntz, M., Rammacher, W., Ulmschneider, P., Musielak, Z. E., & Saar, S. H. 1999, ApJ, 522, 1053CrossRefGoogle Scholar
Cuntz, M., Guinan, E. F., & Kurucz, R. L. 2010, Icarus, submittedGoogle Scholar
Diffey, B. L. 1991, Physics in Medicine and Biology, 36, 299CrossRefGoogle Scholar
Durney, B. 1972, in Sonett, C. P., Coleman, P. J., & Wilcox, J. M. (eds.), Solar Wind (NASA, Washington), p. 282Google Scholar
Fawzy, D., Rammacher, W., Ulmschneider, P., Musielak, Z. E., & Stȩpień, K. 2002, A&A, 386, 971Google Scholar
Goldsmith, D. & Owen, T. 2002, The Search for Life in the Universe, 3rd ed. (University Science Books, Sausalito)Google Scholar
Güdel, M. 2007, Liv. Rev. Sol. Phys., 4, 3Google Scholar
Güdel, M., Guinan, E. F., & Skinner, S. L. 1997, ApJ, 483, 947CrossRefGoogle Scholar
Guinan, E. F. & Engle, S. G. 2009, The Ages of Stars, IAU Symp. 258 [arXiv:0903.4148]Google Scholar
Guinan, E. F. & Ribas, I. 2002, in Montesinos, B., Gimenez, A., & Guinan, E. F. (eds.), The Evolving Sun and Its Influence on Planetary Environments (Astr. Soc. Pac., San Francisco), Vol. 269, p. 85Google Scholar
Guinan, E. F., Ribas, I., & Harper, G. M. 2003, ApJ, 594, 561CrossRefGoogle Scholar
Hawley, S. L., et al. 2003, ApJ, 597, 535CrossRefGoogle Scholar
Horneck, G. 1995, J. Photochem. Photobiol. B: Biology, 31, 43CrossRefGoogle Scholar
Jordan, C. 1997, Astron. Geophys., 38, 10CrossRefGoogle Scholar
Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icarus, 101, 108CrossRefGoogle Scholar
Keppens, R., MacGregor, K. B., & Charbonneau, P. 1995, A&A, 294, 469Google Scholar
Kulikov, Yu. N., Lammer, H., Lichtenegger, H. I. M., Penz, T., Breuer, D., Spohn, T., Lundin, R., & Biernat, H. K. 2007, Space Sci. Rev., 129, 207CrossRefGoogle Scholar
Lammer, H., Kasting, J. F., Chassefière, E., Johnson, R. E., Kulikov, Yu. N., & Tian, F. 2008, Space Sci. Rev., 139, 399CrossRefGoogle Scholar
MacGregor, K. B. & Charbonneau, P. 1994, in Caillault, J.-P. (ed.), Cool Stars, Stellar System, and the Sun VIII (Astr. Soc. Pac., San Francisco), Vol. 64, p. 174Google Scholar
Marcy, G. W. & Basri, G. 1989, ApJ, 345, 480CrossRefGoogle Scholar
Mathioudakis, M., Fruscione, A., Drake, J. J., McDonald, K., Bowyer, S., & Malina, R. F. 1995, A&A, 300, 775Google Scholar
Montesinos, B. & Jordan, C. 1993, MNRAS, 264, 900CrossRefGoogle Scholar
Noyes, R. W, Hartmann, L. W., Baliunas, S. L., Duncan, D. K., & Vaughan, A. H. 1984, ApJ, 279, 763CrossRefGoogle Scholar
Pettersen, B. R. 1989, Sol. Phys., 121, 299CrossRefGoogle Scholar
Rammacher, W. & Cuntz, M. 2003, ApJ (Letters), 594, L51CrossRefGoogle Scholar
Redfield, S., Linsky, J. L., Ake, T. B., Ayres, T. R., Dupree, A. K., Robinson, R. D., Wood, B. E., & Young, P. E. 2002, ApJ, 581, 626CrossRefGoogle Scholar
Ribas, I., Guinan, E. F., Güdel, M., & Audard, M. 2005, ApJ, 622, 680CrossRefGoogle Scholar
Robinson, R. D., et al. 2005, ApJ, 633, 447CrossRefGoogle Scholar
Rutten, R. G. M., Schrijver, C. J., Lemmens, A. F. P., & Zwaan, C. 1991, A&A, 252, 203Google Scholar
Saar, S. H. 1996a, in Strassmeier, K. G. & Linsky, J. L. (eds.), Stellar Surface Structure, IAU Symp. 176 (Kluwer, Dordrecht), p. 237Google Scholar
Saar, S. H. 1996b, in Uchida, Y., et al. (eds.) Magnetodynamic Phenomena in the Solar Atmosphere — Prototypes of Stellar Magnetic Activity, IAU Coll. 153 (Kluwer, Dordrecht), p. 367CrossRefGoogle Scholar
Saar, S. H. & Schrijver, C. J. 1987, in Linsky, J. L. & Stencel, R. E. (eds.), Cool Stars, Stellar System, and the Sun V (Springer, Berlin), p. 38CrossRefGoogle Scholar
Schrijver, C. J. 1987, A&A, 172, 111Google Scholar
Schrijver, C. J., Coté, J., Zwaan, C., & Saar, S. H. 1989, ApJ, 337, 964CrossRefGoogle Scholar
Segura, A., Krelove, K., Kasting, J. F., Sommerlatt, D., Meadows, V., Crisp, D., Cohen, M., & Mlawer, E. 2003, Astrobiology, 3, 689CrossRefGoogle Scholar
Segura, A., Kasting, J. F., Meadows, V., Cohen, M., Scalo, J., Crisp, D., Butler, R. A. H., & Tinetti, G. 2005, Astrobiology, 5, 706CrossRefGoogle Scholar
Simon, T., Herbig, G., & Boesgaard, A. M. 1985, ApJ, 293, 551CrossRefGoogle Scholar
Skumanich, A. 1972, ApJ, 171, 565CrossRefGoogle Scholar
Soderblom, D. R. 1982, ApJ, 263, 239CrossRefGoogle Scholar
Underwood, D. R., Jones, B. W., & Sleep, P. N. 2003, Int. J. Astrobiology, 2, 289CrossRefGoogle Scholar
Vilhu, O. & Walter, F. M. 1987, ApJ, 321, 958CrossRefGoogle Scholar