Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T07:15:59.986Z Has data issue: false hasContentIssue false

Linking Grain Boundary Structure and Composition to Intergranular Stress Corrosion Cracking of Austenitic Stainless Steels

Published online by Cambridge University Press:  15 March 2011

S. M. Bruemmer*
Affiliation:
Pacific Northwest National Laboratory P.O. Box 999, Richland, WA 99532
Get access

Abstract

Grain boundary structure and composition is assessed in austenitic stainless steels along with its influence on intergranular stress corrosion cracking (IGSCC) in high-temperature water. Brief examples are presented illustrating effects of grain boundary character and segregation on behavior in specific light-water-reactor environments. Although grain boundary engineering can produce an increased fraction of “special” boundaries in austenitic stainless alloys, practical benefits depend on the boundary orientation distribution. It is critical to recognize that only ∑3s appear to be more resistant to SCC and the behavior of other low ∑ boundaries is uncertain. Grain boundary composition can have a dominant effect on IGSCC under certain conditions, but altered interfacial chemistry is not required for cracking. In high-potential oxidizing environments, IGSCC susceptibility is a direct function of the boundary Cr concentration. Non- equilibrium thermal segregation of Cr and Mo is often present in mill-annealed stainless steels and may influence cracking susceptibility. This initial grain boundary composition alters subsequent radiation-induced segregation and delays irradiation-assisted SCC susceptibility to higher doses. Other alloying elements and impurities in 300-series stainless steels have been seen to enrich grain boundaries, but few have any significant impact on IGSCC susceptibility. One exception is Si that strongly segregates during irradiation. Recent results suggest that Si may accelerate crack propagation in both low- and high-potential water environments. Critical research is still needed to isolate individual grain boundary characteristics and quantitatively link them to IGSCC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gordon, B. M. and Gordon, G. M., “Corrosion in Boiling Water Reactors,” Corrosion in the Nuclear Power Industry, ed. Danko, J. C., Metals Handbook, Volume 13, Corrosion, ASM International, Metals Park, OH, 1987, 927.Google Scholar
2. Watanabe, T., Res. Mechanica, 11(1984) 47.Google Scholar
3. Watanabe, T., Grain Boundary Engineering, ed. Erb, U. and Palumbo, G., CIM, Montreal, 1993, p. 57.Google Scholar
4. Palumbo, G. and Aust, K. T., Materials Interfaces, ed. Wolf, D. and Yip, S., Chapman and Hall, London, 1992, p. 190.Google Scholar
5. Lehockey, E. M. and Brennenstuhl, A. M., Proc. 11th Int. Conf. Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, ed. Nelson, J. L. and Was, G. S., American Nuclear Society, 2003, p. 568.Google Scholar
6. Crawford, D. C. and Was, G. S., Metall. Trans, 23A (1992) 1195.Google Scholar
7. Pan, Y., Adams, B. L., Olson, T. and Panayotou, N., Acta Mater., 12 (1996) 4685.Google Scholar
8. Shimada, M., Kowawa, H., Wang, Z., Sato, Y. and Karibe, I., Acta Mater., 50–9 (2002) 2331.Google Scholar
9. Alexandreanu, B., Chapell, B. M. and was, G. S., Mater. Sci Eng. A, 300 (2001) 94.Google Scholar
10. Gertsman, V. Y. and Bruemmer, S. M., Acta Mater., 49 (2001) 1589.Google Scholar
11. Gertsman, V. Y. and Bruemmer, S. M., Proc. 10th Int. Conf. Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, ed. Was, G. S. and Ford, F. P., National Association of Corrosion Engineers (NACE), 2002, Paper 55.Google Scholar
12. Was, G. S., Alexandreanu, B., Andresen, P.L. and Kumar, M., Proc. Interfacial Engineering for Optimized Properties III, Materials Research Society, 2004, in press.Google Scholar
13. Bruemmer, S. M. and Thomas, L. E., J. Surface and Interface Analysis, 31 (2001) 571.Google Scholar
14. Andresen, P. L., Emigh, P. W., Morra, M. M. and Horn, R. M., ibid 5, p. 816.Google Scholar
15. Dropek, R. B., Was, G. S., Gan, J., Cole, J. I., Allen, T. R. and Kenik, E. A., ibid 5, p. 1132.Google Scholar
16. Bruemmer, S. M., Arey, B. W. and Charlot, L. A., Corrosion J., 48–1 (1992) 42.Google Scholar
17. Bruemmer, S. M., Charlot, L. A. and Simonen, E. P., Proc. 5th Int. Symp. Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, ed. Simonen, E. P., Gold, R. E. and Cubicciotti, D. E., ANS, 1992, p. 821.Google Scholar
18. Andresen, P. L., Proc. 6th Int. Symp. Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, ed. Gold, R. E. and Simonen, E. P., The Minerals, Metals & Materials Society (TMS), 1993, p. 245.Google Scholar
19. Bruemmer, S. M., Arey, B. W. and Charlot, L. A., ibid 12, p. 277.Google Scholar
20. Bruemmer, S. M. and Was, G. S., J. Nucl. Mater., 216 (1994) 348.Google Scholar
21. Bruemmer, S. M., Corrosion 98, NACE, 1998, Paper 138.Google Scholar
22. Doig, P. and Flewitt, P., Metall. Trans., 18A (1987) 399.Google Scholar
23. Karlsson, L., Acta Metall., 36 (1988) 1.Google Scholar
24. Walmsley, J., Spellward, P., Fisher, S. and Jenssen, A., Proc. 7th Int. Symp. Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, ed. McIlree, A. R. and Bruemmer, S. M., NACE, 1995, p. 985.Google Scholar
25. Bruemmer, S. M., ibid 11, PaperGoogle Scholar
26. Busby, J. T., Was, G. S., Bruemmer, S. M., Edwards, D. J. and Kenik, E. A., Proc. Materials Research Society, 2000, vol. 540, p. 451.Google Scholar
27. Simonen, E. P. and Bruemmer, S. M., ibid 19, p. 751.Google Scholar
28. Kodama, M., Ishiyama, Y., Namatame, S., Susuki, S., Fukuya, K., Sakamoto, H., Nakata, K. and Kato, T., Proc. 9th Int. Symp. Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, ed. Ford, F. P., Bruemmer, S. M. and Was, G. S., TMS, 1999, p. 923.Google Scholar
29. Kodama, M., Nishimura, S., Morisawa, J., Susuki, S., Shima, S. and Yamamoto, M., ibid 15, p.948.Google Scholar
30. Jenssen, A. and Ljunberg, L. G., ibid 22, p. 1043.Google Scholar
31. Bruemmer, S. M., Simonen, E. P., Scott, P. M., Andresen, P. L., Was, G. S. and Nelson, J. L., J. Nucl. Mater., 274 (1999) 299.Google Scholar
32. Simonen, E. P., Charlot, L. A., Edwards, D. J. and Bruemmer, S. M., Materials Science Forum, Vols. 294–296 (1999) 212.Google Scholar