Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T07:21:06.128Z Has data issue: false hasContentIssue false

Bio-mimetic study of novel materials for joint replacements

Published online by Cambridge University Press:  26 February 2011

Rahul Ribeiro
Affiliation:
rahulr@neo.tamu.edu, Texas A&M University, Mechanical Engineering, MS 3123, ENPH Building, College Station, TX, 77843, United States, 979-862-2578
Poulomi Ganguly
Affiliation:
pganguly@mail.chem.tamu.edu, Texas A&M University, Chemistry, United States
Donald Darensbourg
Affiliation:
djdarens@mail.chem.tamu.edu, Texas A&M University, Chemistry, United States
Meitin Usta
Affiliation:
ustam@gyte.edu.tr, Gebze Institute of Technology, Turkey
A. Hikmet Ucisik
Affiliation:
ucisik@hotmail.com, Bogazici University, Prostheses,Materials and Artificial Organs, Turkey
Hong Liang
Affiliation:
hliang@tamu.edu, Texas A&M University, Mechanical Engineering, United States
Get access

Abstract

Polytrimethylene carbonate (PTMC) and poly ε-caprolactone are conventional biodegradable, biocompatible polymers. Their friction response against cartilage and surface attraction forces were studied toward using them as artificial cartilage materials. Their behavior was compared to that of natural cartilage and a conventional joint replacement material, ultrahigh molecular weight polyethylene. It was possible to polymerize these materials using a calcium based catalyst. Simulated body fluid (SBF) was used as lubricant between surfaces in the friction tests. It was found that higher surface attractive forces on a silicon tip AFM related to lower friction coefficients. This confirs the fact that hydrophilic surfaces enhance the effectiveness of boundary lubrication of simulated body fluid. PTMC and PTMC-ε-caprolactone co-polymer showed lower hydrophilicity and higher friction coefficients and need to be modified in order to bring them closer in behavior to natural cartilage.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lewis, G., Journal of Biomedical Materials Research 38(1), 5557 (1997).Google Scholar
2. Katti, K. S., Colloids and Surfaces B: Biointerfaces 39, 133142 (2004).Google Scholar
3. Charnley, J., Low friction arthroplasty of the hip. (Springer, Berlin, 1979).Google Scholar
4. Heuberger, M. P., Widmer, M. R., Zobeley, E., Glockshuber, R. and Spencer, N. D., Biomaterials 26, 11651173 (2005).Google Scholar
5. Oka, M., Ushio, K., Kumar, P., Ikeuchi, K., Hyon, S. H., Nakamura, T. and Fujita, H., Proc. Instn. Mechanical Engineers 214 (H), 5968 (2000).Google Scholar
6. Ushio, K., Oka, M., Hyon, S-H., Hayami, T., Yura, S., Matsumura, K., Toguchida, J., Nakamura, T., “Attachment of Artificial Cartilage to Underlying Bone”, (Wiley Periodicals Inc. 2003) pp. 5968.Google Scholar
7. Hastings, G. W., Polymer 26, 13311335 (1985).Google Scholar
8. Middleton, J. C., Tipton, A J., Biomaterials 21, 23352346 (2000).Google Scholar
9. Moro, T., Takatori, Y., Ishihara, K., Konno, T., Takigawa, Y., Matsushita, T., Chung, U-I., Nakamura, K., Kawaguchi, H., Nature Materials 3, 829836 (2004).Google Scholar
10. Ducheyne, P., Qiu, Q., Biomaterials 20, 22872303 (1999).Google Scholar
11. Kikuchi, M., Ikoma, T., Itoh, S., Matsumoto, H. N., Koyama, Y., Takakuda, K., Shinomiya, K., Tanaka, J., Composites Science and Technology 64, 819825 (2004).Google Scholar
12. Schappacher, M., Fabre, T., Mingotaud, A. F., Soum, A., Biomaterials 22, 28492855 (2001).Google Scholar
13. Pego, A. Paula, Zhong, Z., Dijkstra, P. J., Grijpma, D. W., Feijen, J., Macromolecular Chemistry and Physics 204 (5/6), 747754 (2003).Google Scholar
14. Unsworth, A., J. Eng. Med. 205, 163172 (1991).Google Scholar
15. J-Vahid, D., Jagatia, M., Jin, Z. M. and Dowson, D., J. Biomech. 34(2), 261266 (2001).Google Scholar
16. Widmer, M. R., Heuberger, M. and Spencer, N. D., In: 28th. Leeds-Lyon Symposium on Tribology, Vienna, (Elseiver Sci., 2002), pp. 361366.Google Scholar
17. Sugio, S., Kashima, A., Mochizuki, S., Noda, M. and Kobayashi, K., Protein Eng. 12(6), 439446 (1999).Google Scholar
18. Carter, D. C., He, X. M., Munson, S. H., Twigg, P. D., Gernet, K. M. and Broom, M. B., Science 244, 11951198 (1989).Google Scholar
19. Pico, G. A., Int. J. Biol Macromol. 20(1), 6373 (1997).Google Scholar
20. Muralidhara, B. K. and Prakash, V., Curr. Sci. 72(11), 831834 (1997).Google Scholar
21. Jones, R., Pollock, H. M., Cleaver, J. A. S. and Hodges, C. S., Langmuir 18, 80458055 (2002).Google Scholar
22. Zhang, L., Li, L., Chen, S. and Jiang, S., Langmuir 18, 54485456 (2002).Google Scholar
23. Basire, C., Fretigny, C., Tribology Letters 10(3), 189193 (2001).Google Scholar