Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-15T21:07:14.286Z Has data issue: false hasContentIssue false

Feeding habits of wahoo (Acanthocybium solandri) in the eastern Pacific Ocean

Published online by Cambridge University Press:  13 July 2016

Molker Mendoza-ávila
Affiliation:
Facultad de Ciencias del Mar, Universidad Laica Eloy Alfaro de Manabí, Vía San Mateo S/N. Manta, Manabí, Ecuador Viceministerio de Acuacultura y Pesca, Av. 4 Calle 12-13. Manta, Ecuador
Gabriela Zavala-Zambrano
Affiliation:
Facultad de Ciencias del Mar, Universidad Laica Eloy Alfaro de Manabí, Vía San Mateo S/N. Manta, Manabí, Ecuador Viceministerio de Acuacultura y Pesca, Av. 4 Calle 12-13. Manta, Ecuador
Felipe Galván-Magaña*
Affiliation:
Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN S/N, Apdo. Postal 592, La Paz, Baja California Sur, México
Peggy Loor-Andrade
Affiliation:
Facultad de Ciencias del Mar, Universidad Laica Eloy Alfaro de Manabí, Vía San Mateo S/N. Manta, Manabí, Ecuador
*
Correspondence should be addressed to: F. Galván-Magaña, Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN S/N, Apdo. Postal 592, La Paz, Baja California Sur, México email: fgalvan@ipn.mx

Abstract

Stomach content analysis was used to assess the feeding habits of Acanthocybium solandri based on samples obtained on purse seine fishing trips off the Pacific coasts of Central and South America. A total of 226 samples were obtained; 160 stomachs contained food and 33 prey taxa were identified. Based on the Prey Specific Index of Relative Importance (%PSIRI), cephalopods and fishes were the main prey groups (50.4 and 49.5% PSIRI). Dosidicus gigas (23.4% PSIRI), Stenoteuthis oualaniensis (9.9% PSIRI) and Argonauta spp. (9.4% PSIRI) were the most representative prey. Acanthocybium solandri is a generalist predator based on the results of the Amundsen analysis and niche breadth (Ba = 1).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allain, V. (2003) Diet of mahi-mahi, wahoo and lancetfish in the western and central Pacific. In 16th meeting of the Standing Committee on Tuna and Billfish working paper. Noumea: Secretariat of the Pacific Community, 19 pp.Google Scholar
Amundsen, P.A., Gabler, H.M. and Staldvik, F.J. (1996) A new approach to graphical analysis of feeding strategy from stomach contents data-modification of the Costello (1990) method. Journal of Fish Biology 48, 607614.Google Scholar
Baque-Menoscal, J., Páez-Rosas, D. and Wolff, M. (2012) Feeding habits of two pelagic fish Thunnus albacares and Acanthocybium solandri from the Galapagos Marine Reserve. Revista de Biología Marina y Oceanografía 47, 111.Google Scholar
Bizzarro, J.J., Robinson, H.J., Rinewalt, C.S. and Ebert, D.A. (2007) Comparative feeding ecology of four sympatric skate species off central California, USA. Environmental Biology of Fishes 80, 197220.CrossRefGoogle Scholar
Brown-Peterson, N.J., Franks, J.S. and Burke, A.M. (2000) Preliminary observations on the reproductive biology of wahoo, Acanthocybium solandri, from the northern Gulf of Mexico and Bimini, Bahamas. Proceedings of the Gulf and Caribbean Fisheries Institute 51, 414427.Google Scholar
Brown, S.C., Bizzarro, J.J., Cailliet, G.M. and Ebert, D.A. (2012) Breaking with tradition: redefining measures for diet description with a case study of the Aleutian skate Bathyraja aleutica (Gilbert 1896). Environmental Biology of Fishes 95, 320.Google Scholar
Clarke, M.R. (1962) The identification of cephalopod “beaks” and the relationship between beak size and total body weight. Bulletin of the British Museum (Natural History). Zoology 8, 422480.Google Scholar
Clarke, M.R. (1986) A handbook for the identification of Cephalopod beaks. New York: Oxford University Press, 251 pp.Google Scholar
Clarke, R.K. and Gorley, R. (2001) Primer v5: user manual/tutorial. Plymouth: Primer-E Ltd.Google Scholar
Clothier, C.R. (1950) A Key to Some Southern California Fishes Based on Vertebral Characters. State of California Department of Natural Resources. Division of Fish and Game Bureau of Marine Fisheries. Fish Bulletin No. 79: 83 pp.Google Scholar
Collette, B.B. and Nauen, C.E. (eds) (1983) FAO species catalogue, Volume 2. Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos, and related species known to date. FAO Fisheries Synopsis, 125. Rome: FAO, pp. 1137.Google Scholar
Collette, B.B. (2002) Scombridae. In Carpenter, K.E. (ed.) The living marine resources of the western central Atlantic, Volume 2, Bony Fishes Part 2. (Opistognathidae to Molidae), Sea Turtles and Marine Mammals. FAO Species Identification Guide for Fishery Purposes and American Society of Ichthyologists and Herpetologists Special Publication No. 5. Rome: FAO, pp. 17011722.Google Scholar
Costello, M.J. (1990) Predator feeding strategy and prey importance: a new graphical analysis. Journal of Fish Biology 36, 261263.CrossRefGoogle Scholar
Espinoza, M., Clarke, T.M., Villalobos-Rojas, F. and Wehrtmann, I.S. (2013) Diet composition and diel feeding behaviour of the banded guitarfish Zapteryx xyster along the Pacific coast of Costa Rica, Central America. Journal of Fish Biology 82, 286305.Google Scholar
FAO (2016) FISHSTAT Plus universal software for fishery statistical time series. Version. 2.12.4. Rome: FAO Fisheries Department, Fishery Information, Data and Statistics Unit.Google Scholar
Fischer, W., Krupp, F., Schneider, W., Sommer, C., Carpenter, K.E. and Niem, V.H. (eds) (1995a) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental, Volume 2. Rome: Vertebrados-Parte 1, 6471200.Google Scholar
Fischer, W., Krupp, F., Schneider, W., Sommer, C., Carpenter, K.E. and Niem, V.H. (eds) (1995b) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental, Volume 3. Rome, Vertebrados-Parte 2, 12011813.Google Scholar
Franks, J.S., Hoffmayer, E.R., Ballard, J.S., Garber, N.M. and Garber, A.F. (2008) Diet of wahoo, Acanthocybium solandri, from the Northcentral Gulf of Mexico. Proceedings of the 60th Gulf and Caribbean Fisheries Institute, 5–9 November 2007, pp. 353362.Google Scholar
Galván-Magaña, F., Polo-Silva, C., Hernández-Aguilar, S.B., Sandoval-Lodoño, A., Ochoa-Díaz, M.R., Aguilar-Castro, N., Castañeda-Suárez, D., Chavez-Costa, A.C., Baigorrí-Santacruz, A., Torres-Rojas, Y.E. and Abitia-Cárdenas, L. (2013) Shark predation on cephalopods in the Mexican and Ecuadorian Pacific Ocean. Deep Sea Research II 95, 52–62.Google Scholar
García-Godos, I. (2001) Patrones morfológicos del otolito sagitta de algunos peces óseos del mar peruano. Boletín: Instituto del Mar del Perú20, 183.Google Scholar
Graham, B.S., Grubbs, D., Holland, K. and Popp, B.N. (2007) A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Marine Biology 150, 647658.CrossRefGoogle Scholar
Hurtubia, J. (1973) Trophic diversity measurement in sympatric predatory species. Ecology 54, 885890.Google Scholar
Iversen, E.S. and Yoshida, H.O. (1957) Notes on the biology of the wahoo in the Line Islands. Pacific Science 11, 370379.Google Scholar
Jenkins, K.L.M. and McBride, R.S. (2009) Reproductive biology of wahoo, Acanthocybium solandri, from the Atlantic coast of Florida and the Bahamas. Marine and Freshwater Research 60, 893897.Google Scholar
Jereb, P. and Roper, C.F.E. (2010) Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Myopsid and Oegopsid Squids. FAO Species Catalogue for Fishery Purposes. No. 4, Volume 2. Rome: FAO, 605 pp.Google Scholar
Katz, S.L., Syme, D.A. and Shadwick, R.E. (2001) High-speed swimming: enhanced power in yellowfin tuna. Nature 410, 770771.Google Scholar
Korsmeyer, K.E., Dewar, H., Lai, N.C. and Graham, J.B. (1996) The aerobic capacity of tunas: adaptation for multiple metabolic demands. Comparative Biochemistry and Physiology Part A: Physiology 113, 1724.Google Scholar
Krebs, C.J. (1999) Ecological methodology. Menlo Park, CA: Addison Wesley.Google Scholar
Longhurst, A. (2007) Ecological geography of the sea, 2nd edition. San Diego, CA: Academic Press.Google Scholar
Manooch, C.S. III and Hogarth, W.T. (1983) Stomach contents and giant trematodes from wahoo, Acanthocybium solanderi, collected along the South Atlantic and Gulf Coasts of the United States. Bulletin of Marine Science 33, 227238.Google Scholar
Ménard, F., Labrune, C., Shin, Y.-J., Asine, A.-S. and Bard, F.-X. (2006) Opportunistic predation in tuna: a size-based approach. Marine Ecology Progress Series 323, 223231.Google Scholar
Nigmatullin, Ch.M., Nesis, K.N. and Arkhipkin, A.I. (2001) A review of the biology of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae). Fisheries Research 54, 919.CrossRefGoogle Scholar
Oksanen, J., Blanchet, F., Kindt, R., Legendre, P., O'Hara, R.G., Simpson, G., Solymos, P., Stevens, M.H. and Wagner, H. (2010) Vegan: community ecology package. R package version 1.17–0. Available at http://CRAN.R-project.org/package0vegan Google Scholar
Olson, R.J., Duffy, L.M., Kuhnert, P.M., Galván-Magaña, F., Bocanegra-Castillo, N. and Alatorre-Ramírez, V. (2014) Decadal diet shift in yellowfin tuna Thunnus albacares suggests broad-scale food web changes in the eastern tropical Pacific Ocean. Marine Ecology Progress Series 497, 157178.Google Scholar
Pinkas, L., Oliphant, M.S. and Inverson, L.K. (1971) Food habits of albacore, bluefin tuna and bonito in California waters. California Department of Fish and Game. Fish Bulletin 152, 1105.Google Scholar
Preti, A., Soykan, C.U., Dewar, H., Wells, R.J.D., Spear, N. and Kohin, S. (2012) Comparative feeding ecology of shortfin mako, blue and thresher sharks in the California Current. Environmental Biology of Fishes 95, 127146.Google Scholar
R Development Core Team (2014) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at http://www.R-project.org/ Google Scholar
Rudershausen, P.J., Buckel, J.A. and Edwards, J. (2010) Feeding ecology of blue marlins, dolphinfish, yellowfin tuna, and wahoos from the North Atlantic Ocean and comparisons with other oceans. Transactions of the American Fisheries Society 139, 13351359.Google Scholar
Sepulveda, C.A., Aalbers, S.A., Ortega-Garcia, S., Wegner, N.C. and Bernal, D. (2011) Depth, distribution and temperature preferences of wahoo (Acanthocybium solandri) off Baja California Sur, Mexico. Marine Biology 158, 917926.Google Scholar
Shimose, T., Watanabe, H., Tanabe, T. and Kubodera, T. (2013) Ontogenetic diet shift of age-0 year Pacific bluefin tuna Thunnus orientalis . Journal of Fish Biology 82, 263276.Google Scholar
Szczepanski, J.A. and Bengtson, D.A. (2014) Quantitative food habits of the bullnose ray, Myliobatis freminvillii, in Delaware Bay. Environmental Biology of Fishes 97, 981997.Google Scholar
Theisen, T.C. and Baldwin, J.D. (2012) Movements and depth/temperature distribution of the ectothermic Scombrid, Acanthocybium solandri (wahoo), in the western North Atlantic. Marine Biology 159, 22492258.CrossRefGoogle Scholar
Vaske, J.T., Vooren, C.M. and Lessa, R.P. (2003) Feeding strategy of yellowfin tuna (Thunnus albacares), and wahoo (Acanthocybium solandri) in the Saint Peter and Saint Paul, Archipelago, Brazil. Boletim do Instituto de Pesca, Sao Paulo 29, 173181.Google Scholar
Wegner, N.C., Sepulveda, C.A. and Graham, J.B. (2006) Gill specializations in high-performance pelagic teleosts, with reference to striped marlin (Tetrapturus audax) and wahoo (Acanthocybium solandri). Bulletin of Marine Science 79, 747759.Google Scholar
White, W.T., Platell, M.E. and Potter, I.C. (2004) Comparisons between the diets of four abundant species of elasmobranchs in a subtropical embayment: implications for resource partitioning. Marine Biology 144, 439448. doi: 10.1007/s00227-003-1218-1.Google Scholar
Wolff, G.A. (1984) Identification and estimation of size from the beaks of 18 species of cephalopods from the Pacific Ocean. NOAA Technical Report NMFS 17. 50 pp.Google Scholar
Zischke, M.T. (2012) A review of the biology, stock structure, fisheries and status of wahoo (Acanthocybium solandri), with reference to the Pacific Ocean. Fisheries Research 119–120, 1322.Google Scholar