Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T05:38:36.852Z Has data issue: false hasContentIssue false

Enhanced Thermoelectric Properties of Strongly Degenerate Polycrystalline Silicon upon Second Phase Segregation

Published online by Cambridge University Press:  14 March 2011

Dario Narducci
Affiliation:
Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 53, 20125 Milano (Italy)
Ekaterina Selezneva
Affiliation:
Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 53, 20125 Milano (Italy)
Andrea Arcari
Affiliation:
Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 53, 20125 Milano (Italy)
Gianfranco Cerofolini
Affiliation:
Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 53, 20125 Milano (Italy)
Elisabetta Romano
Affiliation:
Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 53, 20125 Milano (Italy)
Rita Tonini
Affiliation:
Dipartimento di Fisica, Università di Modena e Reggio Emilia, via Campi 213, 41100 Modena (Italy)
Gianpiero Ottaviani
Affiliation:
Dipartimento di Fisica, Università di Modena e Reggio Emilia, via Campi 213, 41100 Modena (Italy)
Get access

Abstract

We report the study of the thermoelectric properties of degenerate, boron-doped polycrystalline silicon on insulator structures. The occurrence of a regime where both the Seebeck coefficient and the conductivity increase is confirmed. This results in a power factor P of 13 mW K-2 m-1. We propose that such high values of P may be determined by adiabatic energy filtering occurring at grain boundaries decorated by segregated boron.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hochbaum, A. I., Chen, R. K., Delgado, R. D., Liang, W. J., Garnett, E. C., Najarian, M., Majumdar, A., and Yang, P. D., Nature 451, 163 (2008); A. I. Boukai, Y. Bunimovich, J. Tahir- Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, ibid., 451, 168(2008). Google Scholar
2. Ioffe, A.F., Semiconductor Thermoelements and Thermoelectric Cooling, (Infosearch Ltd., London, 1957), p. 29.Google Scholar
3. Geballe, T. H. and Hull, G. W., Phys. Rev. 98, 940 (1955).Google Scholar
4. Fulkerson, W., Moore, J. P., Williams, R. K., Graves, R. S., and McElroy, D. L., Phys. Rev. 167, 765 (1968).Google Scholar
5. Slack, G. A. and Hussain, M. A., J. Appl. Phys. 70, 2694 (1991).Google Scholar
6. Weber, L. and Gmelin, E., Appl. Phys. A 53, 136 (1991).Google Scholar
7. Brinson, M. E. and Dunstant, W., J. Phys. C 3, 483 (1970).Google Scholar
8. Ikeda, H. and Salleh, F., Appl. Phys. Lett. 96, 012106 (2010).Google Scholar
9. Masetti, G., Severi, M., and Solmi, S., IEEE Trans. Electron Dev. 30, 764 (1983).Google Scholar
10. Luo, X., Zhang, S. B., and Wei, S. H., Phys. Rev. Lett. 90, 026103 (2003).Google Scholar
11. Chen, G., Nanoscale Energy Transport and Conversion, (Oxford University Press, Oxford, 2005), p. 252.Google Scholar
12. Chattopadhyay, D. and Queisser, H. J., Rev. Mod. Phys. 53, 745 (1981).Google Scholar
13. Solmi, S., Landi, E., and Baruffaldi, F., J. Appl. Phys. 68, 3250 (1990).Google Scholar
14. Faleev, S. V. and Leonard, F., Phys. Rev. B 77, 214304 (2008).Google Scholar