Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T11:47:56.813Z Has data issue: false hasContentIssue false

Non-equilibrium Growth Processes of Porous TiO2 Nanocrystal-films during Pulsed Laser Ablation

Published online by Cambridge University Press:  10 April 2013

Ikurou Umezu
Affiliation:
Department of Physics, Konan University, Kobe 658-8501, Japan
Nobuyasu Yagi
Affiliation:
Department of Physics, Konan University, Kobe 658-8501, Japan
Akira Sugimura
Affiliation:
Department of Physics, Konan University, Kobe 658-8501, Japan
Takehito Yoshida
Affiliation:
Department of Mechanical Engineering, Anan National College of Technology, Anan 774-0017, Japan
Get access

Abstract

We performed pulsed laser ablation of titanium dioxide (TiO2) target in O2 background gas. Effects of background gas pressure and substrate target distance on the structure of deposited films are clarified. The hierarchical structures are observed when we change scale of observation. The film deposited on the substrate is composed of primary nanocrystal and secondary porous-aggregated-nanostructures. The primary nanocrystal changes from anatase to rutile phase with increasing background gas pressure or substrate target distance. The porosity of secondary aggregated structure increases with increasing background gas pressure or substrate target distance. The similarity between the effects of background gas and substrate target distance indicates that confinement of the plume between target and substrate is important for structural formation. The non-equilibrium aggregation processes of nanocrystals in the plume and on the substrate are essential for the hierarchical structure of the nanocrystal film.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tölke, T., Kriltz, A., and Rechtenbach, A., Thin Solid Films 518, 4242 (2010).CrossRefGoogle Scholar
Miao, L., Jin, P., Kaneko, K., Terai, A., Nabatova-Gabain, N., and Tanemura, S., Appl. Surf. Sci. 212-213, 255 (2003).CrossRefGoogle Scholar
Mráz, S. and Schneider, J.M., J. Appl. Phys. 109, 023512 (2011).CrossRefGoogle Scholar
Yoshida, T., Takeyama, S., Yamada, Y., and Mutoh, K., Appl. Phys. Lett. 68, 1772 (1996).CrossRefGoogle Scholar
Yamada, Y., Suzuki, N., Makino, T., and Yoshida, T., J. Vac. Sci. & Technol. A 18, 83 (2000).CrossRefGoogle Scholar
Umezu, I., Sugimura, A., Inada, M., Makino, T., Matsumoto, K., and Takata, M., Phys. Rev. B 76, 10 (2007).CrossRefGoogle Scholar
György, E., Del Pino, A.P., Sauthier, G., Figueras, A., Alsina, F., and Pascual, J., J. Phys. D 40, 5246 (2007).CrossRefGoogle Scholar
Luca, D., Macovei, D., and Teodorescu, C.M., Surf. Sci. 600, 4342 (2006).CrossRefGoogle Scholar
Fusi, M., Russo, V., Casari, C., Bassi, A.L., and Bottani, C., Appl. Surf. Sci. 255, 5334 (2009).CrossRefGoogle Scholar
Wang, S.J., Chang, W.T., Ciou, J.Y., Wei, M.K., and Wong, M.S., J. Vac. Sci. Technol. A 26, 898 (2008).CrossRefGoogle Scholar
Walczak, M., Papadopoulou, E.L., Sanz, M., Manousaki, A., Marco, J.F., and Castillejo, M., Appl. Surf. Sci. 255, 5267 (2009).CrossRefGoogle Scholar
Sauvage, F., Di Fonzo, F., Li Bassi, A., Casari, C.S., Russo, V., Divitini, G., Ducati, C., Bottani, C.E., Comte, P., and Graetzel, M., Nano Lett. 10, 2562 (2010).CrossRefGoogle Scholar
Li, W., Ni, C., Lin, H., Huang, C.P., and Shah, S.I., J. Appl. Phys. 96, 6663 (2004).CrossRefGoogle Scholar
Li, Y. and Ishigaki, T., J. Cryst. Growth 242, 511 (2002).CrossRefGoogle Scholar
Zhang, H. and Banfield, J.F., J. Mater. Chem. 8, 2073 (1998).CrossRefGoogle Scholar
Gribb, A.A. and Banfield, J.F., Am. Mineral. 82, 717 (1997).CrossRefGoogle Scholar