Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T13:22:07.880Z Has data issue: false hasContentIssue false

Trace Fossils with Spreiten from the Late Ediacaran Nama Group, Namibia: Complex Feeding Patterns Five Million Years Before the Precambrian–Cambrian Boundary

Published online by Cambridge University Press:  15 October 2015

Francis A. Macdonald
Affiliation:
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA,
Sara B. Pruss
Affiliation:
Department of Geosciences, Smith College, Northampton, MA 01063, USA,
Justin V. Strauss
Affiliation:
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA,

Abstract

Here we describe large, complex trace fossils in the late Ediacaran Omkyk Member of the Zaris Formation, Nama Group, southern Namibia. The horizontal trace fossils are preserved on a number of talus blocks from a bedding plane of a cm-thick sandstone lens from a single stratigraphic horizon less than 100 m below an ash bed dated at 547.3 ± 0.7 Ma. The forms consist of overlapping U-shaped spreiten elements with parallel limbs surrounded by an outer tube. Individual U-shaped elements are 0.2 to 1 cm in diameter, the outer tube is less than 3 mm in diameter, and the forms as a whole range from 5 to 30 cm long and 3 to 10 cm wide. The specimens commonly show a change in direction and change in diameter. The morphology of these trace fossils is comparable to backfill structures, particularly specimens of Paleozoic Zoophycos from shallow water environments. Here we interpret these horizontal spreiten-burrows to record the grazing of the trace-maker on or below a textured organic surface. The identification of large late Ediacaran trace fossils is consistent with recent reports of backfilled horizontal burrows below the Precambrian–Cambrian boundary and is suggestive of the appearance of complex feeding habits prior to the Cambrian trace fossil explosion.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aller, R. C. 1994. Bioturbation and remineralization of sedimentary organic matter: Effects of redox oscillation. Chemical Geology, 114:331345.CrossRefGoogle Scholar
Aller, R. C., Madrid, V., Chistoserdov, A., Aller, J. Y., and Heilburn, C. 2010. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: Implications for oceanic isotope cycles and the sedimentary record. Geochimica et Cosmochimica Acta, 74:46714692.Google Scholar
Amthor, J. E., Grotzinger, J. P., Schroeder, S., Bowring, S. A., Ramezani, J., Martin, M. W., and Matter, A. 2003. Extinction of Cloudina and Namacalathus at the Precambrian–Cambrian boundary in Oman. Geology, 31:431434.Google Scholar
Bengtson, S. and Zhao, Y. 1992. Predatorial borings in late Precambrian mineralized exoskeletons. Science, 257:367369.Google Scholar
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point, Avalon Zone, eastern Newfoundland), p. 89. In Landing, E., Narbonne, G. M., and Myrow, P. M. (eds.), Trace fossils, Small Shelly Fossils and the Precambrian–Cambrian Boundary. Volume New York State Museum Bulletin 463.Google Scholar
Bottjer, D. J., Hagadorn, J. W., and Dornbos, S. Q. 2000. The Cambrian substrate revolution. GSA Today, 10:17.Google Scholar
Bouougri, E. H. and Porada, H. 2007. Siliciclastic biolaminites indicative of widespread microbial mats in the Neoproterozoic Nama Group of Namibia. Journal of African Earth Sciences, 48:2007.Google Scholar
Bowring, S. A., Grotzinger, J. P., Condon, D. J., Ramezani, J., and Newall, M. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science, 307:10971145.Google Scholar
Brasier, M. D., McIlroy, D., Liu, A. G., Antecliffe, J. B., and Menon, L. R. 2013. The oldest evidence of bioturbation on Earth: Comment. Geology, 41:e289e289.CrossRefGoogle Scholar
Buatois, L. A., Almond, J., and Germs, G. J. B. 2013. Environmental tolerance and range offset of Treptichnus pedum: Implications for the recognation of the Ediacaran–Cambrian boundary. Geology, 41:519522.Google Scholar
Burns, S. J. and Matter, A. 1993. Carbon Isotopic record of the latest Proterozoic from Oman. Ecologae Geologicae Helvetiae, 86:595607.Google Scholar
Calver, C. R. 2000. Isotope stratigraphy of the Ediacaran (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification. Precambrian Research, 100:121150.CrossRefGoogle Scholar
Canfield, D. E. and Farquhar, J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proceedings of the National Academy of Sciences, 106:81238127.CrossRefGoogle ScholarPubMed
Carbone, C. and Narbonne, G. M. 2014. When life got smart: the evolution of behavioral complexity through the Ediacaran and early Cambrian of NW Canada. Journal of Paleontology, 88:309330.Google Scholar
Chen, Z., Zhou, C., Meyer, M., Xiang, K., Schiffbauer, J. D., Yuan, X., and Xiao, S. 2012. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research 224:690701.CrossRefGoogle Scholar
Cloud, P. E. Jr., Gustafson, L. B., and Watson, J. A. L. 1980. The works of living social insects as pseudofossils and the age of the oldest known metazoa. Science, 210:10131015.CrossRefGoogle ScholarPubMed
Cohen, P. A., Knoll, A. H., and Kodner, R. B. 2009 a. Large spinose microfossils in Ediacaran rocks as resting staes of early animals. Proceedings of the National Academy of Sciences, 106:65196524.CrossRefGoogle Scholar
Cohen, P. A., Bradley, A. S., Knoll, A. H., Grotzinger, J. P., Jensen, S., Abelson, J., Hand, K., Love, G. D., Metz, J., McLoughlin, N., Meister, P., Shepard, R., Tice, M., and Wilson, J. P. 2009 b. Tubular compression fossils from the Ediacaran Nama Group, Namibia. Journal of Paleontology, 83:110122.CrossRefGoogle Scholar
Condon, D. J., Zhu, M., Bowring, S. A., Wang, W., Yang, A., and Jin, Y. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308:9598.Google Scholar
Crimes, T. P. 1987. Trace fossils and correlation of late Precambrian and early Cambrian strata. Geological Magazine, 124:97119.Google Scholar
Crimes, T. P. 1992. The record of trace fossils across the Proterozoic–Cambrian boundary, p. 177202. In Lipps, J. H. and Signor, P. W. III (eds.), Origin and Early Evolution of the Metazoa. Plenum, New York.CrossRefGoogle Scholar
Crimes, T. P. and Germs, G. J. B. 1982. Trace fossils from the Nama Group (Precambrian–Cambrian) of Southwest Africa (Namibia). Journal of Paleontology, 56:890907.Google Scholar
Droser, M. L. and Bottjer, D. J. 1993. Trends and patterns of Phanerozoic ichnofabrics. Annual Review of Earth and Planetary Sciences, 21:205225.Google Scholar
Droser, M. L., Gehling, J. G., and Jensen, S. 2005. Ediacaran trace fossils: True and false, p. 125138. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development. Peabody Museum of Natural History, Yale University, New Haven, Connecticut.Google Scholar
Droser, M. L., Jensen, S., and Gehling, J. G. 2002. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: Implications for the record of early bilaterians and sediment mixing. Proceedings of the National Academy of Sciences, 99:12, 57212,576.CrossRefGoogle ScholarPubMed
Dzik, J. 2005. Behavioral and anatomical unity of the earliest burrowing animals and the cause of the “Cambrian explosion.” Paleobiology, 31:503521.Google Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 334:10911097.Google Scholar
Fedonkin, M. A. 1977. Precambrian–Cambrian ichnocoenoses of the East European Platform, p. 183194. In Crimes, T. P. and Harper, T. P. (eds.), Trace Fossils 2. Geological Journal Special Issue, Volume 9.Google Scholar
Fedonkin, M. A. and Waggoner, B. M. 1997. The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature, 388:868871.Google Scholar
Gehling, J. G. and Droser, M. L. 2009. Textured organic surfaces associated with the Ediacara biota in South Australia. Earth-Science Reviews, 96:196206.Google Scholar
Gehling, J. G. and Droser, M. L. 2013. How well do fossil assemblages of the Ediacara Biota tell time? Geology, 41:447450.CrossRefGoogle Scholar
Germs, G. J. B. 1972. The stratigraphy and paleontology of the lower Nama Group, South West Africa. Bulletin, University of Cape Town, Department of Geology, Chamber Mines Precambrian Research Unit 12, 250 p.Google Scholar
Germs, G. J. B. and Greese, P. G. 1991. The foreland basin of the Damara and Gariep Orogens in Namaqualand and southern Namibia: Stratigraphic correlations and basin dynamics. South African Journal of Geology, 94:159169.Google Scholar
Geyer, G. and Uchman, A. 1995. Ichnofossil assemblages from the Nama Group (Neoproterozoic–lower Cambrian) in Namibia and the Proterozoic–Cambrian boundary problem revisited. Beringeria Special Issue 2, p. 175202.Google Scholar
Glaessner, M. F. 1969. Trace fossils from the Precambrian and basal Cambrian. Lethaia, 2:369393.Google Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270:598604.Google Scholar
Grotzinger, J. P., Fike, D. A., and Fischer, W. W. 2011. Enigmatic origin of the largest-known carbon isotope excursion in Earth's history. Nature Geoscience, 4:285292.CrossRefGoogle Scholar
Grotzinger, J. P. and Miller, R. M. 2008. The Nama Group, p. 1322913272. In Miller, R. M. (ed.), The Geology of Namibia. Volume 2. Geological Survey of Namibia, Windhoek, Nambia.Google Scholar
Grotzinger, J. P., Watters, W. A., and Knoll, A. H. 2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26:334359.Google Scholar
Higgins, J. A., Fischer, W. W., and Schrag, D. P. 2009. Oxygenation of the ocean and sediments: Consequences for the seafloor carbonate factory. Earth and Planetary Science Letters, 284:2533.Google Scholar
Hua, H., Pratt, B. R., and Zhang, L.-Y. 2003. Borings in Cloudina shells: Complex predator-prey dynamics in the terminal Neoproterozoic. Palaios, 18:454459.2.0.CO;2>CrossRefGoogle Scholar
Husson, J. M., Maloof, A. C., and Schoene, B. 2012. A syn-depositional age for Earth's deepest δ13C excursion required by isotope conglomerate tests. Terra Nova, 24:318325.CrossRefGoogle Scholar
Jensen, S. 2003. The Proterozoic and earliest Cambrian trace fossil record: Patterns, problems and perspectives. Integrative and Comparative Biology, 43:219228.CrossRefGoogle ScholarPubMed
Jensen, S., Droser, M. L., and Gehling, J. G. 2006. A critical look at the Ediacaran trace fossil record, p. 115157. In Xiao, S. and Kaufman, A. J. (eds.), Neoproterozoic Geobiology and Paleobiology. Volume 27. Springer, New York, New York.Google Scholar
Jensen, S., Saylor, B. Z., Gehling, J. G., and Germs, G. J. B. 2000. Complex trace fossils from the terminal Proterozoic of Namibia. Geology, 28:143146.Google Scholar
Liu, A. G., McIlroy, D., and Brasier, M. D. 2010. First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology, 38:123126.CrossRefGoogle Scholar
Macdonald, F. A., Strauss, J. V., Sperling, E. A., Halverson, G. P., Narbonne, G. M., Johnston, D. T., Kunzmann, M., Schrag, D. P., and Higgins, J. A. 2013. The stratigraphic relationship between the Shuram carbon isotope excursion, the oxidation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada. Chemical Geology, doi: 10.1016/j.chemgeo.2013.05.032.Google Scholar
MacNaughton, R. B. and Narbonne, G. M. 1999. Evolution and eology of Neoproterozoic–lower Cambrian trace fossils, NW Canada. Palaios, 14:97115.CrossRefGoogle Scholar
Martin, H. 1975. Structural and palaeogeographical evidence for an upper Palaeozoic sea between southern Africa and South America. Proceeding Papers IUGS 3rd Gondwana Symposium, Canberra, Australia, p. 3751.Google Scholar
Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: Implications for metazoan evolution. Science, 288:841845.CrossRefGoogle ScholarPubMed
McIlroy, D. and Logan, G. A. 1999. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic–Cambrian transition. Palaios, 14:5872.CrossRefGoogle Scholar
Meysman, F. J. R., Middelberg, J. J., and Heip, C. H. R. 2006. Bioturbation: A fresh look at Darwin's last idea. Trends in Ecology and Evolution, 21:688695.Google Scholar
Miller, M. F. 1991. Morphology and paleoenvironmental distribution of Paleozoic Spirophyton and Zoophycos: Implications for the Zoophycos ichnofacies. Palaios, 6:410425.CrossRefGoogle Scholar
Narbonne, G. M. 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33:421442.Google Scholar
Narbonne, G. M. and Aitken, J. D. 1990. Ediacaran fossils from the Sekwi Brook area, Mackenzie Mountains, northwest Canada. Palaeontology, 33:945980.Google Scholar
Narbonne, G. M., Saylor, B. Z., and Grotzinger, J. P. 1997. The youngest Ediacaran fossils from southern Africa. Journal of Paleontology, 71:953967.CrossRefGoogle ScholarPubMed
Narbonne, G. M., Xiao, S., and Shields-Zhou, G. 2012. Ediacaran Period, p. 427449. In Gradstein, F., Ogg, J., Schmitz, M. D., and O. G. (eds.), Geologic Timescale 2012. Elsevier, Oxford.Google Scholar
Noffke, N., Knoll, A. H., and Grotzinger, J. P. 2002. Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: A case study from the upper Neoproterozoic Nama Group, Namibia. Palaios, 17:533544.Google Scholar
Pelechaty, S. M. 1998. Integrated chronostratigraphy of the Vendian System of Siberia: Implications for a global stratigraphy. Journal of the Geological Society of London, 155:957973.Google Scholar
Pell, S. D., McKirdy, D. M., Jansyn, J., and Jenkins, R. J. F. 1993. Ediacaran carbon isotope stratigraphy of South Australia—An initial study. Transactions of the Royal Society of South Australia, 117:153161.Google Scholar
Rogov, V., Marusin, V., Bykova, N., Goy, Y., Nagovitsin, K. E., Kochnev, B. B., Karlova, G., and Grazhdankin, D. V. 2012. The oldest evidence of bioturbation on Earth. Geology, 40:395398.Google Scholar
Sappenfield, A., Droser, M. L., and Gehling, J. G. 2011. Problematica, trace fossils, and tubes within the Ediacara member (South Australia): Redefining the Ediacaran trace fossil record one tube at a time. Journal of Paleontology, 85:256265.Google Scholar
Sappenfield, A., Droser, M. L., Kennedy, M. J., and McKenzie, R. 2012. The oldest Zoophycos and implications for early Cambrian deposit feeding. Geological Magazine, 149:11181123.Google Scholar
Schieber, J. 1999. Microbial mats in terrigenous clastics: The challenge of identification in the rock record. Palaios, 14:312.Google Scholar
Schmitz, M. D. 2012. Radiometric ages used in GTS2012, Appendix 2, p. 10451082. In Gradstein, F., Ogg, J., Schmitz, M. D., and Ogg, G. (eds.), Geologic Timescale 2012. Elsevier.Google Scholar
Schrag, D. P., Higgins, J. A., Macdonald, F. A., and Johnston, D. T. 2013. Authigenic carbonate and the history of the global carbon cycle. Science, 339:540543.Google Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14:8693.Google Scholar
Seilacher, A. 2007. Trace Fossil Analysis. Springer, Berlin.Google Scholar
Seilacher, A., Buatois, L. A., and Mangano, M. G. 2005. Trace fossils in the Ediacaran–Cambrian transition: Behavioral diversification, ecological turnover and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology, 227:323356.Google Scholar
Stollhofen, H., Stainstreet, I. G., Bangert, B., and Grill, H. 2000. Tuffs, tectonism and glacially related sea-level changes, Carboniferous–Permian, southern Namibia. Palaeogeography, Palaeoclimatology, Palaeoecology, 161:127150.Google Scholar
Waggoner, B. M. 2003. The Ediacaran biotas in space and time. Integrated Comparative Biology, 43:104113.Google Scholar
Wetzel, A. 1999. Tilting marks: A wave-produced tool mark resembling a trace fossil. Palaeogeography, Palaeoclimatology, Palaeoecology, 145:251254.Google Scholar
Wetzel, A. 2013. Tilting marks: Observations on tool marks resembling trace fossils and their morphological varieties. Sedimentary Geology, 288:6065.CrossRefGoogle Scholar
Wilson, J. P., Grotzinger, J. P., Fischer, W. W., Hand, K. P., Jensen, S., Knoll, A. H., Abelson, J., Metz, J. M., McLoughlin, N., and Cohen, P. A. 2012. Deep-water incised valley deposits at the Ediacaran–Cambrian boundary in southern Namibia contain abundant treptichnus pedum. Palaios, 27:252273.Google Scholar
Wood, R. A., Grotzinger, J. P., and Dickson, J. A. D. 2002. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science, 296:23832386.Google Scholar
Xiao, S. and Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74:767788.Google Scholar
Zhou, C. and Xiao, S. 2007. Ediacaran δ13C chemostatigraphy of South China. Chemical Geology, 237:107126.Google Scholar
Ziebis, W., Forster, S., Huettel, M., and Jorgensen, B. B. 1996. Complex burrows of the mud shrimp Callianassa truncata and their geochemical impact in the sea bed. Nature, 382:619622.Google Scholar