Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T23:37:24.784Z Has data issue: false hasContentIssue false

Nematic liquid crystalline formation of F-actin displays features of a continuous transition

Published online by Cambridge University Press:  17 March 2011

Jorge Viamontes
Affiliation:
Physics Department, Indiana University, 727 East Third St Bloomington, IN 47405, U.S.A.
Jay X. Tang
Affiliation:
Physics Department, Indiana University, 727 East Third St Bloomington, IN 47405, U.S.A.
Get access

Abstract

The phase transition of solutions of the protein filaments F-actin from the isotropic (I) to the nematic (N) liquid crystalline state was studied by quantitative measurements of optical birefringence and fluorescence. The threshold protein concentration for the transition varies inversely with the average filament length, consistent with the prediction of statistical mechanics of rodlike suspensions based on the excluded volume effect. By measurements of local optical birefringence, a range of actin concentration is identified as the transition region between the isotropic and nematic phases. However, local measurements of the protein concentrations detect no discontinuity within a large number of samples in the transition region, suggesting that the I-N transition for F-actin occurs continuously over a defined concentration range. Thus the I-N transition appears to be of a higher order than the 1st, for F-actin of average filament length 3 μm or longer. Additionally, by mixing a tiny number of labeled actin filaments with the unlabeled ones, we observed thermal motions of individual filaments, thus ruling out an alternative picture, viewing an F-actin solution as an amorphous gel in which long filaments are too entangled or even cross-linked to allow partitioning of filaments into domains of discontinuous concentrations. We propose based on these experimental findings that either the extreme polydispersity of F-actin, or the large average filament length itself, renders the I-N transition to be a continuous one, in terms of both the average alignment of filaments and the protein concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Oosawa, F., Biophys. Chem 47 (2), 101111 (1993).Google Scholar
2. Alberts, B, Bray, D, Lewis, J et al., Molecular biology of the cell, 3 ed. (Garland, New York, 1994).Google Scholar
3. Condeelis, J., Annu Rev Cell Biol 9 (411), 411444 (1993).Google Scholar
4. Stossel, T. P., J Cell Biol 99 (1 Pt 2), 15s21s (1984).Google Scholar
5. Coppin, CM and Leavis, PC, Biophys 63, 794807 (1992).Google Scholar
6. Furukawa, R., Kundra, R., and Fechheimer, M., Biochemistry 32 (46), 1234612352 (1993).Google Scholar
7. Kerst, A., Chmielewski, C., Liversay, C. et al., Proc. Natl. Acad. Sci. 87, 42414245 (1990).Google Scholar
8. Suzuki, A, Maeda, T, and Ito, T, Biophys. J. 59, 2530 (1991).Google Scholar
9. Onsager, L., Ann. NY Acad. Sci. 51, 627659 (1949).Google Scholar
10. Spudich, JA and Watt, S, J. Biol. Chem. 246, 48664871 (1971).Google Scholar
11. Pardee, J. D. and Spudich, J. A., Methods Cell Biol 24, 271289 (1982).Google Scholar
12. Janmey, P. A., Peetermans, J., Zaner, K. S. et al., J. Biol. Chem. 261 (18), 83578362 (1986).Google Scholar
13. Tang, J. X. and Janmey, P. A., Journal of Biological Chemistry 271, 85568563 (1996).Google Scholar
14. Oldenbourg, R. and Mei, G., J. of Microscopy 180, 140147 (1995).Google Scholar
15. Kas, J., Strey, H., Tang, J. X. et al., Biophysical Journal 70, 609625 (1995).Google Scholar
16. Tang, J. X., Janmey, P. A., Stossel, T. P. et al., Biophysical Journal 76 (4), 22082215 (1999).Google Scholar
17. Sato, T., Jinbo, Y., and Teramoto, A., Macromolecules 30 (3), 590596 (1997).Google Scholar
18. Buxbaum, R. E., Dennerll, T., Weiss, S. et al., Science 235 (4795), 15111514. (1987).Google Scholar
19. Flory, P. J., Statistical Mechanics of Chain Molecules. (Interscience Publishers, 1969).Google Scholar
20. Chen, Z. Y., Macromolecules 26, 34193423 (1993).Google Scholar
21. Tang, J. X. and Fraden, S., Liquid Crystals 19 (4), 459467 (1995).Google Scholar
22. Vroege, G. L. and Lekkerkerker, H. N. M., COLLOID SURFACE A 130, 405413 (1997).Google Scholar
23. Kooij, F. M. van der, Kassapidou, K., Lekkerkerker, H. N. et al., Nature 406 (6798), 868871. (2000).Google Scholar
24. Adams, M., Dogic, Z., Keller, S. L. et al., Nature 393, 349352 (1998).Google Scholar
25. Gittes, F., Mickey, B., Nettleton, J. et al., Journal of Cell Biology 120, 923934 (1993).Google Scholar
26. Isambert, H., Venier, P., Maggs, A. C. et al., Journal of Biological Chemistry 270, 1143711444 (1995).Google Scholar
27. Ott, A., Magnasco, M., Simon, A. et al., Physical Review. E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 48, 1642 (1993).Google Scholar
28. Ciferri, A., Krigbaum, W. R., and Meyer, R. B., (Academic Press, New York, 1982).Google Scholar
29. Morse, D., Macromolecules 31, 70307043 (1998).Google Scholar
30. Gennes, P. G. de, Journal of Chemical Physics 55 (2), 572579 (1971).Google Scholar
31. Buitenhuis, J., Donselaar, L. N., Buining, P. A. et al., J. Colloidal and Interface Sci. 175, 4656 (1995).Google Scholar