Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T07:52:59.668Z Has data issue: false hasContentIssue false

HIT Solar Cell With V2Ox Window Layer

Published online by Cambridge University Press:  27 June 2017

Erenn Ore*
Affiliation:
Department Of Engineering, University Of Cambridge, Cambridge CB3 0FA, United Kingdom.
Gehan Amaratunga
Affiliation:
Department Of Engineering, University Of Cambridge, Cambridge CB3 0FA, United Kingdom.
Stefaan De Wolf
Affiliation:
École Polytechnique Fédérale de Lausanne, Breguet 2, Neuchatel, CH2000, Switzerland.
*
*(Email: ore@cjbs.net)
Get access

Abstract

In the conventional crystalline silicon heterojunction solar cell with the intrinsic thin layer structure (the HIT solar cell), a p-doped thin film silicon or its alloy (pDTF-Si/A) is used as the hole collecting window layer. However, the parasitic absorbance in the pDTF-Si/A window layer, and the toxic, explosive diborane gas used for p-doping are limiting factors for achieving HIT cells with reduced processing costs and / or higher efficiencies. In this work, pDTF-Si/A is replaced by V2Ox, which is deposited by a simple physical vapor deposition technique. Due to the wide band gap of V2Ox, the HIT solar cell with the V2Ox window layer generates a higher short-circuit current density than the reference conventional HIT cell under 1 sun, and achieves an open-circuit voltage of 0.7 V. Furthermore, the charge carrier lifetime and pseudo-efficiency values of the HIT solar cell with the V2Ox window layer indicate that this cell has the potential to outperform the conventional HIT cell in terms of the power conversation efficiency under the standard test conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Holman, Z. C., Descoeudres, A., Barraud, L., Fernandez, F. Z., Seif, J. P., De Wolf, S., Ballif, C., IEEE J. Photovolt. 2 (1), 7 (2012).Google Scholar
Page, M. R., Iwaniczko, E., Xu, Y. Q., Roybal, L., Hasoon, F., Wang, Q., Crandall, R. S., Thin Solid Films 519 (14), 4527 (2011).CrossRefGoogle Scholar
Seif, P. J., Descoeudres, A., Filipic, M., Smole, F., Topic, M., Holman, Z. C., De Wolf, S., Ballif, C., J. Appl. Phys. 115 (2), 024502 (2014).CrossRefGoogle Scholar
Street, R. A., in Hydrogenated Amorphous Silicon, (Cambridge University Press, Cambridge, 1991), p. 367.CrossRefGoogle Scholar
Okamoto, H., Nitta, Y., Yamaguchi, T., Hamakawa, Y., Sol. Energy Mater. 2, 313 (1980).Google Scholar
Fthenakis, V. M., Prog. Photovolt. 6 (2), 91 (1998).Google Scholar
Silicon Valley Toxics Coalition, Toward a Just and Sustainable Solar Energy Industry, San Jose (2009).Google Scholar
Battaglia, C., Martin De Nicolas, S., De Wolf, S., Yin, X., Zheng, M., Ballif, C., Javey, A., Appl. Phys. Lett. 104 (11), 113902 (2014).Google Scholar
Ore, E., Melskens, J., Smets, A., Zeman, M., Amaratunga, G., MRS Advances 1 (14), 977 (2016).Google Scholar
Ore, E., Amaratunga, G., MRS Advances 2 (15), 825 (2017).Google Scholar
Ore, E., Amaratunga, G., in IEEE 40th Photovoltaic Specialist Conference, (2014 IEEE 40th, Denver, CO, 2014) p. 3087.Google Scholar
Greiner, M. T, Chai, L., Helander, M. G., Tang, W. M., Lu, Z. H., Adv. Funct. Mater. 22 (21), 4557 (2012).Google Scholar
Greiner, M. T., Lu, Z. H., NPG Asia Mater. 5 (7), 55 (2013).Google Scholar
Meyer, J., Zilberberg, K., Riedl, T., Kahn, A., J. Appl. Phys. 110, 033710 (2011).Google Scholar
Zhao, L., Zhou, C. L., Li, H. L., Diao, H. W., Wang, W. J., Sol. Energ. Mat. Sol. Cells 92, 673 (2008).Google Scholar
Tawada, Y., Okamoto, H., Hamakawa, Y., Appl. Phys. Lett. 39, 237 (1981).CrossRefGoogle Scholar
Kimmerle, A., Rothhardt, P., Wolf, A., Sinton, R. A., Energy Procedia 55, 101 (2014).Google Scholar
Sinton, R. A., NREL/SR-520–35884, NREL National Renewable Energy Lab., CO. (2004).Google Scholar
Kerr, M. J., Cuevas, A., Sinton, R. A., J. Appl. Phys. 91 (1), 399 (2002).Google Scholar
De Wolf, S., Descoeudres, A., Holman, Z. C., Ballif, C., Green 2 (1), 7 (2012).Google Scholar
Würfel, P., Physica E 14, 18 (2002).CrossRefGoogle Scholar
Herrmann, F., Würfel, P., Am. J. Phys. 73 (8), 717 (2005).Google Scholar
Würfel, P., in Physics of Solar Cells from Principles to Advanced concepts, 2nd Ed. (Wiley- Vch. Verlag GmbH & Co., 2009), pp. 113-115, p. 99.Google Scholar
Elumalai, N. K., Saha, A., Vijila, C., Jose, R., Jie, Z., Ramakrishna, S., Phys. Chem. Chem. Phys. 15, 6831 (2013).Google Scholar
Moormann, H., Kohl, D., Heiland, G., Surf. Sci. 100 (2), 302 (1980).CrossRefGoogle Scholar
Fonash, S. J., in Solar Cell Device Physics, 2nd ed. (Elsevier Science Ltd., Oxford, 2010), p. 81, pp. 189202.Google Scholar
Tao, G., Makaro, Z., Zeman, M., Metselaar, J. W., in MRS Proceedings (Vol. 336, CambridgeUniversity Press, Cambridge, 1994), p. 705.Google Scholar
McEvoy, A., Markvart, T., Castaner, L., in Practical Handbook Of Photovoltaics: Fundamentals And Applications, edited by Markvart, T., Castaner, L. (Elsevier Science Ltd., Oxford, 2003), pp. 7579.Google Scholar
Gledel, C., Audiere, J. P., Clement, R., J. Mater. Sci. 24 (7), 2493 (1989).Google Scholar
Sanchez, C., Livage, J., Audiere, J. P., Madi, A., J. Non-Cryst. Solids 65 (2-3), 285 (1984).Google Scholar
Centurioni, E., Iencinella, D., IEEE Electron Device Lett. 24 (3), 177 (2003).Google Scholar
Zuo, L., Yao, J., Li, H., Chen, H., Sol. Energy Mater. Sol. Cells 122, 88 (2014).Google Scholar