Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T09:29:39.196Z Has data issue: false hasContentIssue false

Effect of Laser Illumination on Oxidization of Porous Silicon

Published online by Cambridge University Press:  28 February 2011

L. Z. Zhang
Affiliation:
Department of Physics, Peking University, Beijing 100871, China.
J. C. Mao
Affiliation:
Department of Physics, Peking University, Beijing 100871, China.
B. R. Zhang
Affiliation:
Department of Physics, Peking University, Beijing 100871, China.
W. X. Zhu
Affiliation:
General Research Institute of Non-ferrous Metals, Beijing 100083, China.
Y. L. He
Affiliation:
Amorphous Physics Research Lab, BUAA Beijing 100083, China.
H. Z. Song
Affiliation:
Department of Physics, Peking University, Beijing 100871, China.
J. Q. Duan
Affiliation:
Department of Physics, Peking University, Beijing 100871, China.
G. G. Qin
Affiliation:
Department of Physics, Peking University, Beijing 100871, China.
Get access

Abstract

We have studied the effect of laser illumination (argon laser line of 488 nm) on the oxidization process of the inner surfaces of porous silicon (PS) by measuring the photoluminescence (PL), Fourier-transform infrared (FTIR) absorption and x-ray photoelectron spectroscope and contrasted the variations of PL and FTIR spectra of the PS treated in the following four ways: 1. In vacuum with laser illumination (LI) with power density of 12 mW / mm2. 2. In oxygen with LI. 3. In oxygen without LI. The times for all the above three treatments were 1 h. 4. Storage in air for 2 months without LI. The PL peak of PS showed serious degradation and a blue shift in case 2 but only a moderate degradation and no shift in case 1. The results of FTIR absorption show that the LI in an atmosphere of oxygen enhanced greatly the increase of oxygen-related absorption bands and the decrease of various silicon-hydrogen vibrational mode absorption bands.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Uhlir, A., Bell Sys. Technol. J. 35, 333 (1956).Google Scholar
2. Turner, D.R., J. Electrochem. Soc, 105, 402 (1956).Google Scholar
3. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
4. Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 8561 (1991).Google Scholar
5. Koshida, N. and Koyama, H., Appl. Phys. Lett. 60, 347 (1991).Google Scholar
6. Pickering, C., Beale, M.I.J., Robbins, D. J., Pearson, P.J., and Greet, R., J. Phys. C: Solid State Phys. 17, 6535 (1984).Google Scholar
7. Brandt, M.S., Fuchs, H.D., Stutzman, M., Weber, J., and Cardona, M., Solid State Commmun. 81, 307 (1992).Google Scholar
8. Tsai, C., Li, K.H., Sarathy, J., Shin, S., and Campbell, J.C., Appl. Phys. Lett. 59, 281 (1991).Google Scholar
9. Xu, Z. Y., Gal, M., and Gross, M., Appl. Phys. lett. 60, 1375 (1992)Google Scholar
10. Canham, L.T., Houlton, M.R., Leong, W.Y., Pickering, C., and Keen, J.M., J. Appl. Phys. 70, 422 (1991).Google Scholar
11. Tischler, M.A., Collins, R.T., Stathis, J.H., and Tsang, J.C., Appl. Phys. Lett. 60, 639 (1992).Google Scholar
12. Zhang, L.Z., Zhu, W.X., Mao, J.C., Zhang, B.R., Duan, J.Q., and Qin, G.G., Chinese J. Semiconductors, 13, 715 (1992);Google Scholar
Zhu, W.X., Gao, Y.X., Zhang, L.Z., Zhang, B.R., Mao, J.C., Duan, J.Q., and Qin, G.G., to be presented in Superlattices and Microstructures.Google Scholar
13. Kaiser, W., Kech, P.B., and Lange, C.F., Phys. Rev. 101, 1264 (1956).Google Scholar
14. Bordsky, M.H., Cardona, M., and Cuomo, J.J., Phys, Rev. B 16, 3356 (1977).Google Scholar
15. Wagner, H., Butz, R., Backes, U., and Bruchmann, D., Solid State Commun. 38, 1155 (1981).Google Scholar
16. Chabal, Y.J., Bigashi, G.S., Raghavachari, K., and Burrows, V.A., J. Vac. Sci. Technol. A7, 2104 (1989).Google Scholar