Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T17:16:37.215Z Has data issue: false hasContentIssue false

Dislocation Intersections and Reactions in FCC and BCC Crystals

Published online by Cambridge University Press:  15 February 2011

Ladislas P. Kubin
Affiliation:
Laboratoire d'Etude des microstructures, CNRS-ONERA, 29 Av. de la Division Leclerc, BP 72, 92322 Chatillon Cedex, France
Ronan Madec
Affiliation:
Now at: DPTA, Commissariat à l'Energie Atomique, BP12, 91680 Bruyères-le-Châtel, France
Benoit Devincre
Affiliation:
Laboratoire d'Etude des microstructures, CNRS-ONERA, 29 Av. de la Division Leclerc, BP 72, 92322 Chatillon Cedex, France
Get access

Abstract

The various types of configurations formed in face-centered cubic (fcc) and body-centered cubic (bcc) structures by two interacting, non-coplanar, dislocation segments of various orientations are examined and discussed. The focus is on junction formation and on a particular interaction, the collinear interaction, which deserves much more attention than paid up to now.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Taylor, G.I., Proc. Roy. Soc. A 145, 362 (1934).Google Scholar
2. Saada, G., Acta Metall. 8. 841 (1960).Google Scholar
3. Friedel, J., 1967, Dislocations (Pergamon Press, 1964), p. 43.Google Scholar
4. Schoeck, G. and Frydman, R., 1972, Phys. Stat. Sol. (b) 53, 661 (1972).Google Scholar
5. Püschl, W., Frydman, R. and Schoeck, G., Phys. Stat. Sol. (a) 74, 211 (1982).Google Scholar
6. Dupuy, L. and Fivel, M., Acta Mat. 50, 4873 (2002).Google Scholar
7. Püschl, W., Phys. Stat. Sol. 90, 181 (1985).Google Scholar
8. Püschl, W., Phil. Mag. Lett. 80, 199 (2000).Google Scholar
9. Püschl, W. and Schoeck, G., Crystal Res. and Technology 19, 303 (1984).Google Scholar
10. Bulatov, V.V., Abraham, F.F., Kubin, L.P., Devincre, B. and Yip, S., Nature 391, 669 (1998).Google Scholar
11. Rodney, D. and Phillips, R., Phys. Rev. Lett. 82, 1704 (1999).Google Scholar
12. Wickham, L.K., Schwarz, K., and Stölken, J.S., Phys. Rev. Lett. 83, 4574 (1999).Google Scholar
13. Shenoy, V.B., Kukta, R.V. and Phillips, R., Phys. Rev. Lett. 84, 1491 (2000).Google Scholar
14. Shin, C., Fivel, M., Rodney, D., Phillips, R., Shenoy, V.B. and Dupuy, L., J. Phys IV (France) 11, 19 (2001).Google Scholar
15. Madec, R., Devincre, B. and Kubin, L.P., Phys. Rev. Lett. 89, 255508 (2002).Google Scholar
16. Kubin, L.P., Canova, G., Condat, M., Devincre, B., Pontikis, V. and Brwchet, Y., Solid State Phenomena 23-24, 455 (1992).Google Scholar
17. Devincre, B. and Kubin, L.P., 1997, Mat. Sci. Eng. A 234-236, 8 (1997).Google Scholar
18. Madec, R., Devincre, B. and Kubin, L.P., Scripta Mater. 47, 689 (2002).Google Scholar
19. Madec, R., Devincre, B. and Kubin, L.P., in Multiscale Modeling of Materials – 2000, ed. Kubin, L.P., Selinger, R., Bassani, J.L. and Cho, K. (Materials Research Society, 2000), Symposium Proceedings Vol. 653, p. z18.Google Scholar
20. Madec, R., Ph.D. Dissertation, University of Orsay (2001).Google Scholar
21. Madec, R., Devincre, B. and Kubin, L.P., 2002c, Comp. Mater. Sci. 23, 219 (2002).Google Scholar
22. Kroupa, F., 1961, Czech. J. Phys. B 11, 847 (1961).Google Scholar
23. Hirth, J. and Lothe, J., Theory of Dislocations (Krieger, 1982), p. 123.Google Scholar
24. Tang, M., Devincre, B., and Kubin, L.P., Model. Simul. in Mat. Sci. Eng. 7, 893 (1999).Google Scholar
25. Basinski, S.J. and Basinski, Z.J., in: Dislocations in Solids, ed. Nabarro, FRN (North Holland, 1979), Vol. 4, p. 261.Google Scholar
26. Groh, S., Devincre, B., Kubin, L., Roos, A., Feyel, F. and Chaboche, J.-L., Phil. Mag. Lett., 83, 303, 2003.Google Scholar