Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T04:49:19.799Z Has data issue: false hasContentIssue false

Strength and Electrical Conductivity of Carbon Nanotube Yarns

Published online by Cambridge University Press:  01 February 2011

Mark W Schauer
Affiliation:
mschauer@nanocomptech.com, Nanocomp Technologies, Concord, New Hampshire, United States
David Lashmore
Affiliation:
dlashmore@nanocomptech.com
Diana Lewis
Affiliation:
dlewis@nanocomptech.com, Nanocomp Technologies, Concord, New Hampshire, United States
Benjamin M. Lewis
Affiliation:
blewis@nanocomptech.com, Nanocomp Technologies, Concord, New Hampshire, United States
Erick C. Towle
Affiliation:
etowle@nanocomptech.com, Nanocomp Technologies, Concord, New Hampshire, United States
Get access

Abstract

The strength and electrical conductivity of Carbon Nanotube (CNT) yarns is dramatically affected by the handling of the material after the nanotubes are produced. Our nanotube production process involving Chemical Vapor Deposition (CVD) using the floating catalyst method produces a mass of entangled bundles of single-walled nanotubes in a gas suspension. Simply collecting and spinning this material produces a yarn with strength and electrical conductivity far less than the properties of the individual nanotubes due to the poor alignment of the bundles on the microscopic scale. We have developed methods of aligning the CNT material that are analogous to the techniques used in the textile industry for spinning staple yarns, but modified to be appropriate for nano-scale material. The result is a dramatic improvement in strength and electrical conductivity of our CNT yarns.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Endo, M. Chem Tech 1988, 18, 568576.Google Scholar
(2) Endo, M.; Takeuchi, K.; Kobori, K.; Takahashi, K.; Kroto, H.W.; Sarkar, A. Carbon 1995, 33, 873881.Google Scholar
(3) Endo, M.; Takeuchi, K.; Igarashi, S.; Kobori, K.; Shiraishi, M.; Kroto, H. W. Journal of Physics and Chemistry of Solids 1993, 54, 18411848.Google Scholar
(4) Oberlin, A.; Endo, M.; Koyama, T. Journal of Crystal Growth 1976, 32, 335349.Google Scholar
(5) Geng, J. F.; Singh, C.; Shephard, D. S.; Shaffer, M. S. P.; Johnson, B. F. G.; Windle, A. H. Chemical Communications 2002, 26662667.Google Scholar
(6) Singh, C.; Shaffer, M.; Kinloch, I.; Windle, A. Physica B-Condensed Matter 2002, 323, 339340.Google Scholar
(7) Andrews, R.; Jacques, D.; Rao, A. M.; Derbyshire, F.; Qian, D.; Fan, X.; Dickey, E. C.; Chen, J. Chemical Physics Letters 1999, 303, 467474.Google Scholar
(8) Schauer, M. W.; Lashmore, D.; White, B. Mater. Res. Soc. Symp. Proc. 2008, 1081, P0305.Google Scholar
(9) Chaffee, J.; Lashmore, D.; Lewis, D.; Mann, J.; Schauer, M.; White, B. In Nsti Nanotech 2008, Vol 3, Technical Proceedings – Microsystems, Photonics, Sensors, Fluidics, Modeling, and Simulation; Laudon, M. Romanowicz, B. Eds. 2008, p 118121.Google Scholar
(10) Motta, M.; Li, Y. L.; Kinloch, I.; Windle, A. Nano Lett 2005, 5, 1529–33.Google Scholar