Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T04:33:12.795Z Has data issue: false hasContentIssue false

Realization of Polymeric Electro-Optic Modulators with Less Than One Volt Drive Voltage Requirement

Published online by Cambridge University Press:  21 March 2011

Cheng Zhang
Affiliation:
Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089-1661, U.S.A
Michael Lee
Affiliation:
Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089-1661, U.S.A
Adam Winklemann
Affiliation:
Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089-1661, U.S.A
Heidi Northcroft
Affiliation:
Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089-1661, U.S.A
Christopher Lindsey
Affiliation:
Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089-1661, U.S.A
Alex K. Y. Jen
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA, 98195-1700, U.S.A
Timothy Londergan
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA, 98195-1700, U.S.A
William H. Steier
Affiliation:
Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089-0483
Larry R. Dalton
Affiliation:
Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089-1661, U.S.A Department of Chemistry, University of Washington, Seattle, WA, 98195-1700, U.S.A
Get access

Abstract

The roles played by spatially anisotropic intermolecular electrostatic interactions, chromophore shape, host dielectric constant, and poling field strength in defining maximum achievable electro-optic activity for electrically poled chromophore/polymer materials are investigated by equilibrium and Monte-Carlo quantum statistical mechanical calculations. Even simple Hamiltonians reproduce critical qualitative features such as the existence of a maximum in plots of electro-optic activity versus chromophore number density in a polymer matrix. Comparison of theoretical results for various methods provides a useful check on the validity of approximations employed with individual methods. The most significant conclusion to derive from a comparison of experimental and theoretical results is the dependence of maximum achievable electro-optic activity upon chromophore shape. Theoretical calculations suggest a new paradigm for the design of optimum electro-optic chromophores; realization of the desired shapes may be facilitated by dendritic synthetic approaches. In the presence of intermolecular electrostatic interactions, the dependence of electro-optic activity upon material dielectric permittivity and electric poling field strength is more complex than in the absence of such interactions. Of particularly, interest are conditions that lead to second order phase transitions to lattices containing centrically (antiferroelectricallly) ordered chromophore domains. Such phase transitions can lead to further complications in the attempted preparation of device quality materials but can be effectively avoided by utilization of theoretically derived phase diagrams.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

20. Teng, C. C., Appl. Phys. Lett., 60, 1538 (1992).Google Scholar
21. Wang, W., Chen, D., Fetterman, H. R., Shi, Y., Steier, W. H., and Dalton, L. R., IEEE Photon. Tech. Lett., 7, 638 (1995).Google Scholar
22. Wang, W., Chen, D., Fetterman, H. R., Shi, Y., Steier, W. H., Dalton, L. R., and Chow, P. M. D., Appl. Phys. Lett., 67, 1806 (1995).Google Scholar
23. Chen, D., Fetterman, H. R., Chen, A., Steier, W. H., Dalton, L. R., Wang, W., and Shi, Y., Appl. Phys. Lett., 70, 3335 (1997).Google Scholar
24. Chen, D., Fetterman, H. R., Chen, A., Steier, W. H., Dalton, L. R., Wang, W., and Shi, Y., Proc. SPIE, 3006, (1997).Google Scholar
20. Chen, D., Bhattacharya, D., Udupa, A., Tsap, B., Fetterman, H. R., Chen, A., Lee, S. S., Chen, J., Steier, W. H., and Dalton, L. R., IEEE Photon. Tech. Lett., 11, 5456 (1999).Google Scholar
7. Chen, A., Chuyanov, V., Marti-Carrera, F. I., Garner, S., Steier, W. H., Chen, J., Sun, S., and Dalton, L. R., Proc. SPIE, 3005, (1997).Google Scholar
8. Garner, S. M., Lee, S. S., Chuyanov, V., Yacoubian, A., Chen, A., Steier, W. H., Zhu, J., Chen, J., Wang, F., Ren, A. S., and Dalton, L. R., Proc. SPIE, 3491, 421 (1998).Google Scholar
9. Garner, S. M., Lee, S.-S., Chuyanov, V., Chen, A., Yacoubian, A., Steier, W. H., and Dalton, L. R., IEEE J. Sel. Topics Quantum Electron., 35, 1146 (1999).Google Scholar
10. Steier, W. H., Chen, A., Lee, S.-S., Garner, S., Zhang, H., Chuyanov, V., Dalton, L. R., Wang, F., Ren, A. S., Zhang, C., Todorova, G., Harper, A. W., Fetterman, H. R., Chen, D., Udupa, A., Bhattacharya, D., and Tsap, B., Chem.Phys., 245, 487 (1999).Google Scholar
11. Dalton, L. R., Steier, W. H., Robinson, B. H., Zhang, C., Ren, A., Garner, S., Chen, A., Londergan, T., Irwin, L., Carlson, B., Fifield, L., Phelan, G., Kincaid, C., Amend, J., and Jen, A., J. Chem. Mater., 9, 1905 (1999).Google Scholar
12. Lee, S. S., Udupa, A. H., Erlig, H., Zhang, H., Chang, Y., Zhang, C., Chang, D.H., Bhattacharya, D., Tsap, B., Steier, W. H., Dalton, L. R., and Fetterman, H. R., IEEE Microwave and Guided Wave Lett., 9, 357 (1999).Google Scholar
20. Udupa, A. H., Erlig, H., Tsap, B., Chang, Y., Chang, D., Fetterman, H. R., Zhang, H., Lee, S. S., Wang, F., Steier, W. H., and Dalton, L. R., Electron. Lett., 35, 1702 (1999).Google Scholar
21. Shi, Y., Wang, W., Bechtel, J. H., Chen, A., Garner, S., Kalluri, S., Steier, W. H., Chen, D., Fetterman, H. R., Dalton, L. R., and Yu, L., IEEE J. Sel. Topics Quantum Electron., 2, 289 (1996).Google Scholar
15. Mao, S. S. H., Ra, Y., Guo, L., Zhang, C., Dalton, L. R., Chen, A., Garner, S., and Steier, W. H., Chem. Mater., 10, 146 (1998).Google Scholar
16. Dalton, L. R., Polymers for electro-optic modulator waveguides, Electrical and Optical Polymer Systems: Fundamentals, Methods, and Applications, eds. Wise, D. L., Cooper, T. M., Gresser, J. D., Trantolo, D. J., and Wnek, G. E., (World Scientific, 1998), pp. 609661.Google Scholar
17. Todorova, G., Ren, A. S., Lee, M. S., Zhang, C., Dalton, L. R., Zhang, H., and Steier, W. H., Polym. Prepr., 40, 916 (1999).Google Scholar
18. Jen, A. K. Y., Liu, Y., Zheng, L., Liu, S., Drost, K. J., Zhang, Y., and Dalton, L. R., Adv. Mater., 11, 452 (1999).Google Scholar
19. Robinson, B. H., Dalton, L. R., Harper, A. W., Ren, A., Wang, F., Zhang, C., Todorova, G., Lee, M., Aniszfeld, R., Garner, S. M., Chen, A., Steier, W. H., Houbrecht, S, Persoons, A., Ledoux, I., Zyss, J, and Jen, A. K. Y., Chem. Phys., 245, 35 (1999).Google Scholar
20. Shi, Y., Lin, W., Olson, D. J., Bechtel, J. H., Zhang, H., Steier, W. H., Zhang, C., and Dalton, L. R., Science, in review.Google Scholar
21. Shi, Y., Lin, W., Olson, D., and Bechtel, J. H., presented at the 1999 MRS Fall Meeting, Boston, MA, 2000 (these proceedings).Google Scholar
22. Dalton, L. R., Harper, A. W., Ren, A., Wang, F., Todorova, G., Chen, J., Zhang, C., and Lee, M., Ind. Eng. Chem. Res., 38, 8 (1999).Google Scholar
23. Harper, A. W., Sun, S., Dalton, L. R., Garner, S. M., Chen, A., Kalluri, S., Steier, W. H., and Robinson, B. H., J. Opt. Soc. Am. B, 15, 329 (1998).Google Scholar
24. Dalton, L. R., Harper, A. W., and Robinson, B. H., Proc. Natl. Acad. Sci. USA, 94, 4842 (1997).Google Scholar
25. Robinson, B. H. and Dalton, L. R., unpublished results.Google Scholar
26. Piekara, A., Proc. R. Soc. London A, 149, 360 (1939).Google Scholar