Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-20T08:10:58.689Z Has data issue: false hasContentIssue false

Use of Focused Ion Beam Milling for Patterned Growth of Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Ying Chen
Affiliation:
ying.chen@anu.edu.au, The Australian National University, Electronic Materials Engineering, Mills Road, Canberra, ACT 0200, Australia, 61 2 6125 8338
Ying Chen
Affiliation:
ying.chen@anu.edu.au, The Australian National University, Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Mills Road, Canberra, ACT 0200, Australia
Hua Chen
Affiliation:
hua.chen@anu.edu.au, The Australian National University, Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Mills Road, Canberra, ACT 0200, Australia
James S Williams
Affiliation:
jsw109@rsphysse.anu.edu.au, The Australian National University, Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Mills Road, Canberra, ACT 0200, Australia
Get access

Abstract

A new template technique has been developed to help patterned growth of carbon nanotubes (CNTs) on Si surface without predeposition of metal catalysts. Focused ion beam (FIB) milling was used to create trenches on Si wafer surface as the template and carbon nanotubes only nucleated and grew inside the trenches during a controlled pyrolysis of iron phthalocyanine at 1000oC. The selective growth in the trenches is due to its special surface morphology, crystalline structure and capillarity effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y., Zhao, R. A., Wang, G., Science 1996, 274, 1701.Google Scholar
[2] Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., Provencio, P. N., Science 1998, 282, 1105.Google Scholar
[3] Huang, S. M., Dai, L. M., Mau, A. W. H., J Mater Chem 1999, 9, 1221.Google Scholar
[4] Ward, J. W., Wei, B. Q., Ajayan, P. M., Chem. Phys. Lett 2003, 376, 717.Google Scholar
[5] Chen, Y., Yu, J., Appl Phys Lett 2005, 87, 033103.Google Scholar
[6] Peng, H. B., Ristroph, T. G., Schurmann, G. M., King, G. M., Yoon, J., Narayanamurti, V., Golovchenko, J. A., Applied Physics Letters 2003, 83, 4238.Google Scholar
[7] Jiao, J., Dong, L. F., Foxley, S., Mosher, C. L., Tuggle, D. W., Microscopy and Microanalysis 2003, 9, 516.Google Scholar
[8] Huang, S. M., Dai, L. M., Mau, A. W. H., J. Phys. Chem. B 1999, 103, 4223.Google Scholar
[9] Chen, Y., Chadderton, L. T., J Mater Res 2004, 19, 2791.Google Scholar
[10] Chen, Y., Yu, J., Carbon 2005, 43, 3183.Google Scholar
[11] Li, D. C., Dai, L. M., Huang, S. M., Mau, A. W. H., Wang, Z. L., Chem. Phys. Lett 2000, 316, 349.Google Scholar
[12] Chen, Y., Conway, M. J., Gerald, J. D. Fitz, Williams, J. S., Chadderton, L. T., Carbon 2004, 42, 1543.Google Scholar
[13] Chen, Y., Gerald, J. D. Fitz, Williams, J. S., Bulcock, S., Chem Phys Lett 1999, 299, 260.Google Scholar
[14] Melngailis, J., Musil, C. R., Stevens, E. H., Utlaut, M., Kellogg, E. M., Post, R. T., Geis, M. W., Mountain, R. W., Journal of Vacuum Science & Technology B 1986, 4, 176.Google Scholar
[15] Chadderton, L. T., Chen, Y., J Cryst Growth 2002, 240, 164.Google Scholar