Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T07:14:28.093Z Has data issue: false hasContentIssue false

Total Energy Differences Between Silicon Carbide Polytypes and their Implications for Crystal Growth

Published online by Cambridge University Press:  10 February 2011

Sukit Llmpijumnong
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, OH 44106–7079
Walter R. L. Lambrecht
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, OH 44106–7079
Get access

Abstract

The energy differences between various SiC polytypes are calculated using the full-potential linear muffin-tin orbital method and analyzed in terms of the anisotropie next nearest neighbor interaction (ANNNI) model. The fact that J1 + 2J2 < 0 with J1 > 0 implies that twin boundaries in otherwise cubic material are favorable unless twins occur as nearest neighbor layers. Contrary to some other recent calculations we find J1 > |J2|. We discuss the consequences of this for stabilization of cubic SiC in epitaxial growth, including considerations of the island size effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cheng, C., Needs, R. J., and Heine, V., J. Phys. C 21, 1049 (1988).Google Scholar
2. Cheng, C., Heine, V., and Needs, R. J., J. Phys. Condens. Matter 2, 5115 (1990).Google Scholar
3. Park, C. H., Cheong, B.-H., Lee, K.-H., and Chang, K. J., Phys. Rev. B 49, 4485 (1994).Google Scholar
4. Käckell, K., Wenzien, B., and Bechstedt, F., Phys. Rev. B 50, 17037 (1994).Google Scholar
5. Karch, K., Wellenhofer, G., Pavone, P., Rössler, U., and Strauch, D., in Proc. 22nd Int. Coni. Phys. Semicond., edited by Lockwood, D. (World Scientific, Singapur, 1995), p. 401.Google Scholar
6. Rutter, M. J. and Heine, V., J. Phys. Condens. Matter 9, 8213 (1997).Google Scholar
7. Heine, V., Cheng, C., Engel, G. E., and Needs, R. J., in Wide Band Gap Semiconductors, ed. Moustakas, T. D., Pankove, J. I., and Hamakawa, Y., Mat. Res. Soc. Symp. Proc. Vol. 242, p. 507 (Mater. Res. Soc, Pittsburgh, 1992);Google Scholar
Heine, V., Cheng, C., and Needs, R. J., Mater. Sci. and Eng. B, 11, 55 (1992).Google Scholar
8. Heine, V., Cheng, C., and Needs, R. J., J. Am. Ceram. Soc. 74, 2630 (1991).Google Scholar
9. Methfessel, M., Phys. Rev. B 38 1537 (1988).Google Scholar
10. Perdew, J. P., in Electronic Structure of Solids '91, edited by Ziesche, P. and Eschrich, H. (Akademie Verlag, Berlin, 1991), p. 11;Google Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
11. Limpijumnong, S. and Lambrecht, W. R. L., unpublishedGoogle Scholar
12. Lambrecht, W. R. L., Segali, B., Methfessel, M., and van Schilfgaarde, M., Phys. Rev. B 44, 3685 (1991).Google Scholar
13. Stan, M. A., Patton, O., Vithana, H. K. M., Johnson, D. L., Warner, J. D., Piltch, N. D., Yang, J., and Pirouz, P., in Diamond, SiC and Nitride Wide Bandgap Semiconductors, ed. Carter, C. H. Jr, Gildenblat, G., Nakamura, S., and Nemanich, R. J, Mater. Res. Soc. Symp. Proc. Vol. 339, p. 423 (MRS, Pittsburgh 1995).Google Scholar
14. Matsunami, H. and Kimoto, T. in Diamond, SiC and Nitride Wide bandgap Semiconductors, ed. Carter, C. H. Jr, Gildenblat, G., Nakamura, S., and Nemanich, R. J., Mater. Res. Soc. Symp. Proc. Vol. 339, p. 369 (MRS, Pittsburgh, 1994).Google Scholar
15. Kohyama, M. and Yamamoto, R., in Diamond, SiC and Nitride Wide Bandgap Semi-conducotrs,, ed. Carter, C. H. Jr, Gildenblat, G., Nakamura, S., and Nemanich, R. J, Mater. Res. Soc. Symp. Proc. Vol. 339, p. 9 (MRS, Pittsburgh 1995).Google Scholar