Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T22:00:49.463Z Has data issue: false hasContentIssue false

Thermochemical Method for Coating AISI 316L Stainless Steel with Ti

Published online by Cambridge University Press:  01 February 2011

Jorge López-Cuevas
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Ramos Arizpe, 25900 Coah., México
José L. Camacho-Martínez
Affiliation:
CIATEQ, Querétaro, 76150 Qro., México
Juan C. Rendón-Angeles
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Ramos Arizpe, 25900 Coah., México
Martín I. Pech-Canul
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Ramos Arizpe, 25900 Coah., México
Juan Méndez-Nonell
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Ramos Arizpe, 25900 Coah., México CIQA, Saltillo, 25253 Coah., México
Get access

Abstract

This paper presents a thermochemical method, based on a mixture of molten alkaline halides to produce a Ti coating on AISI 316L stainless steel. The thickness of the coatings is a function of temperature and time. It is observed that the physical form of the Ti source employed affects both coating thickness and morphology. The formation of several inter-diffusion layers is detected, each having a characteristic chemical composition, morphology and location at the substrate/coating interface. It is proposed that some of the produced Ti coatings can be employed to improve osseointegration of stainless steel for potential prosthetic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cook, N.C., Sci. Amer. 221, 38 (1969).Google Scholar
2. Cardarelli, F., Taxil, P. and Savall, A. Int. J. Refract. Met. H. 14, 365 (1996).Google Scholar
3. Okabe, T.H., and Waseda, Y. JOM-J. Min. Met. Mat. S. 49, 28 (1997).Google Scholar
4. Uda, T., Okabe, T.H., Waseda, Y. and Awakura, Y. Sci. Technol. Adv. Mat. 7, 490 (2006).Google Scholar
5. Wei, P., Qiliang, H., Jian, C., Juan, C. and Huang, Y. Mater. Lett. 31, 317 (1997).Google Scholar
6. Straumanis, M.E., Shin, S.T., and Schlechten, A.W., J. Electrochem. Soc. 104, 17 (1957).Google Scholar
7. Steinman, J.B., Warnock, R.V., Root, C.G., and Stetson, A.R., J. Electrochem. Soc. 114, 1018 (1967).Google Scholar
8. Li, C.-H., Lu, H.-B., Xiong, W.-H. and Chen, X. Surf. Coat. Tech. 150, 163 (2002).Google Scholar
9. Chassaing, E., Basile, F. and Lorthioir, G. J. Appl. Electrochem. 11, 187 (1981).Google Scholar
10. Baumgartner, C.E., Anal. Chem. 64, 2001 (1992).Google Scholar
11. Shih, S.T., Straumanis, M.E., and Schlechten, A.W., J. Electrochem. Soc. 103, 395 (1955).Google Scholar
12. Schlechten, A.W., Straumanis, M.E., and Gill, C.B., J. Electrochem. Soc. 102, 81 (1955).Google Scholar
13. Vargas, G., Méndez, M., Méndez, J., and Salinas, A., U.S. Patent 5,482,731 (1996).Google Scholar
14. Fathi, M.H., Salehi, M., Saatchi, A., Mortazavi, V. and Moosavi, S.B., Dent. Mater. 19, 188 (2003).Google Scholar
15. Menzies, I.A., Hill, D.L., Hills, G.J., Young, L. and Bockris, J. O'M. J. Electroanal. Chem. 1, 161 (1959).Google Scholar
16. Asaoka, K., Kuwayama, N., Okuno, O. and Miura, I. J. Biomed. Mater. Res. 19, 699 (1985).Google Scholar
17. Thieme, M., Wieters, K.P., Bergner, F., Scharnweber, D., Worch, H., Ndop, J., Kim, T.J., and Grill, W. J. Mater. Sci. - Mater. M. 12, 225 (2001).Google Scholar
18. Li, B.-Y., Rong, L.-J., Li, Y.-Y. and Gjunter, V.E., Intermetallics 8, 881 (2000).Google Scholar
19. Ghosh, M. and Chatterjee, S. Mater. Sci. Eng. A 358, 152 (2003).Google Scholar
20. Kundu, S. and Chatterjee, S. Mater. Sci. Eng. A 425, 107 (2006).Google Scholar