Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T11:13:01.424Z Has data issue: false hasContentIssue false

Subcritical Bifurcation from Planar to Cellular Interface in Al – 0.5 wt.% Cu Directionally Solidified

Published online by Cambridge University Press:  10 February 2011

O. Fornaro
Affiliation:
IFIMAT-CIC,UNICEN, Pinto 399 (7000) Tandil, Argentina, solidif@exa.unicen.edu.ar
H. Palacio
Affiliation:
IFIMAT-CIC,UNICEN, Pinto 399 (7000) Tandil, Argentina, solidif@exa.unicen.edu.ar
H. Biloni
Affiliation:
LEMIT-CIC, Calle 52 entre 121 y 122 (1900) La Plata, Argentina, lemit@ibm.net
Get access

Abstract

Samples of the Al – 0.5wt.% Cu system were directionally grown under controlled conditions, to study the role played by the instabilities in the process relatives to the microstructure selection for a given values of interface velocity, and thermal gradient. Using an interface quenching technique and metallographic analysis in longitudinal and transversal cuts of the samples, we determine the transition mechanisms between the different stages of the growth, and associate them to the stability of the solidification front. We study the planar to a cellular transition in different conditions, and although the solidification parameters are in good agreement with the perturbations theory, when analyzing the amplitude of the perturbations during the planar to a cellular transition, the same theory is not able to predict certainly the critical wavelength in this case. Also, we found a subcritical behavior during the transition from a planar to a cellular interface for the diluted Al – Cu system, detecting a hysteresis behavior for the amplitude of the perturbations when it is increasing and then decreasing the interface velocity, through the threshold.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Flemings, M. C., Solidification Processing, McGraw-Hill, New York, (1974).Google Scholar
2. Biloni, H. and Boettinger, W. J., in Physical Metallurgy, ch. 8: Solidification, edited by Cahn, R. W. and Haasen, P., Elsevier Science BV (1996) 669.Google Scholar
3. Langer, J. S., Rev. Modern Phys., 52 (1980) 1.Google Scholar
4. Trivedi, R. and Kurz, W., Acta Metall. Matter, 42, 1 (1994) 15.Google Scholar
5. Tiller, W. A., Jackson, K. A., Rutter, J. W. and Chalmers, B., Acta Metall., 1 (1953) 428.Google Scholar
6. Mullins, W. W. and Sekerka, R. F., J. App. Phys., 35 (1964) 2.Google Scholar
7. Wollkind, D. J. and Segel, L. A., Phil. Trans. R Soc. London, 268 (1970) 351.Google Scholar
8. Sriranganathan, R., Wollkind, D. J. and Oulton, D. B., J. Crystal Growth, 62 (1983) 265.Google Scholar
9. Caroli, B., Caroli, C. and Roulet, B., J. Crystal Growth, 68 (1984) 677.Google Scholar
10. Cheveigné, S., Guthmann, C. and Lebrun, M. M., J. Physique, 47 (1986) 2095.Google Scholar
11. Eshelman, M. A. and Trivedi, R., Acta Metall., 35 (1987) 2443.Google Scholar
12. Cheveigné, S., Guthmann, C., Kurowski, P., Vicente, E. and Biloni, H., J. Crystal Growth, 92 (1988) 616.Google Scholar
13. Liu, D., Williams, L. M. and Cummins, H. Z., Phys. Rev. E 50 (1994) 4286.Google Scholar
14. Fornaro, O. and Palacio, H. A., Scripta Metal Mater, 31 (1994) 1265.Google Scholar
15. Fornaro, O. and Palacio, H. A., Scripta Matter, 36 (1997) 439.Google Scholar
16. Fornaro, O., PhD Thesis, Universidad Nacional del Centro de la Provincia de Buenos Aires, 1997.Google Scholar
17. Billia, B. and Trivedi, R., in Handbook of crystal growth, ch. 14 vol I: “Pattern formation in crystal growth”, D. T. J. Hurle eds. (1993) 912.Google Scholar
18. Merchant, G. J. and Davies, S. H., Phys. Rev. B 40 (1989) 11140.Google Scholar