Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T04:27:40.567Z Has data issue: false hasContentIssue false

Observation of Coulomb Blockade Effect in Silicon Nanocrystallites at room Temperature

Published online by Cambridge University Press:  15 February 2011

Xiaofeng Gu
Affiliation:
State Key Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China, kjchen@netra.nju.edu.cn
Hua Qin
Affiliation:
State Key Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China, kjchen@netra.nju.edu.cn
Hai Lu
Affiliation:
State Key Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China, kjchen@netra.nju.edu.cn
Jun Xu
Affiliation:
State Key Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China, kjchen@netra.nju.edu.cn
Kunji Chen
Affiliation:
State Key Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China, kjchen@netra.nju.edu.cn
Get access

Abstract

We report the fabrication and electrical characteristics of an ultrathin nanocrystalline-silicon/amorphous silicon oxide double barrier resonant tunneling diode. The cross-section high resolution TEM photographs indicate the layered structure and the crystallinity of nanocrystalline Si with an average grain size of 10 nm. In this prototype device, a series of reproducible conductance peaks have been observed as a function of the applied gate bias at room temperature. The real voltage spacing of 0.38V between the peaks is determined from an equivalent circuit. The results are in agreement with the theory of Coulomb blockade effect using 1.1 aF of capacitance in single Si nanocrystallite. We conclude that the observed behavior results from resonant tunneling, which is strongly influenced by Coulomb blockade effect, through the zero-dimensional states in the well isolated silicon quantum dots.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Beenaker, C. W. J. and van Houton, H., Solid State Phys. 44, 1 (1991).Google Scholar
2. Reed, M. A., Randall, J. N., Aggarwal, R. J., Matyi, R. J., Moore, T. M., and Westel, A. E., Phys. Rev. Lett. 60, 535 (1988);Google Scholar
Fulton, T. A. and Dolan, G. J., Phys. Rev. Lett. 59, 109 (1987).Google Scholar
3. Meirav, U., Kastner, M. A., and Wind, S. J., Phys. Rev. Lett. 65, 77 (1990).Google Scholar
4. van Houton, H. and Beenaker, C.W. J., Phys. Rev. Lett. 63, 1893 (1989).Google Scholar
5. Su, B., Goldman, V. J., and Cunningham, J. E., Science, 255, 313 (1992).Google Scholar
6. Geerligs, L. J., Verbrugh, S. M., Hadley, P., Mooij, J. E., Pothier, H., Lafarge, P., Urbina, C., Esteve, D., and Devoret, M. H., Z. Phys .B 85, 349 (1991); Phys. Rev. Lett. 64, 2691 (1990).Google Scholar
7. Nakazato, K., Blaikie, R. J., Cleaver, J. R. A., and Ahmed, H., Electronics Letters, 29, 384 (1993).Google Scholar
8. Ye, Q. Y., Tsu, R., and Nicollian, E. H., Phys. Rev. B 44, 1806 (1991).Google Scholar
9. Leobandung, E., Guo, L. J., Wang, Y., and Chou, S. Y., Appl. Phys. Lett. 67, 938 (1995); Appl. Phys. Lett. 67, 2339 (1995);Google Scholar
Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbe, E. F., and Chan, K., Appl. Phys. Lett. 68, 1377 (1996).Google Scholar
10. Chen, M. and Chen, K., Acta Physica Sinica (Oversea Edition), 3, 250 (1994).Google Scholar
11. Nicollian, E. H. and Tsu, R., J. Appl. Phys. 74, 4020 (1993).Google Scholar
12. McEuen, P. L., Foxman, E. B., Meirav, U., Kastner, M. A., Meir, Y., Wingreen, N. S., and Wind, S. J., Phys. Rev. Lett. 66, 1926 (1991).Google Scholar
13. Yano, K., Ishii, T., Hashimoto, T., Kobayashi, T., Murai, F., and Seki, K., IEEE Trans. Electron Devices, 41, 1628 (1994); Appl. Phys. Lett. 67, 828 (1995).Google Scholar