Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T03:42:05.380Z Has data issue: false hasContentIssue false

Electrical properties of boron doped CVD diamond after plasma cleaning probed by capacitance-voltage profiling

Published online by Cambridge University Press:  15 July 2014

Luana S. Araujo
Affiliation:
NanO LaB-Departamento de Física, Universidade Federal de São Carlos, SãoCarlos, São Paulo, Brazil.
Olivia Berengue
Affiliation:
Faculdade de Engenharia de Guaratinguetá, Universidade Estadual Júlio de Mesquita Filho , Guaratinguetá , São Paulo, Brazil.
Maurício Baldan
Affiliation:
Laboratório Associado de Sensores e Materiais, LAS/INPE, São José dos Campos, São Paulo, Brazil.
Neidenei Ferreira
Affiliation:
Laboratório Associado de Sensores e Materiais, LAS/INPE, São José dos Campos, São Paulo, Brazil.
João Moro
Affiliation:
Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Bragança Paulista, São Paulo, Brazil.
Adenilson Chiquito
Affiliation:
NanO LaB-Departamento de Física, Universidade Federal de São Carlos, SãoCarlos, São Paulo, Brazil.
Get access

Abstract

Doped diamond films grown by chemical vapor techniques has been used to study hydrogen and oxygen terminated diamond. It is known that the electrical characteristics of metal-diamond interface are strongly affected by the diamond surface features. O2 plasma treatment was used as a cleaning procedure for as grown diamond samples leading to changes in the capacitance measurements after treatment. The alteration in the characteristics of the samples can be attributed to the surface adsorbates like hydrogen and water vapor present in the atmosphere. The results indicates that the O2 plasma treatment was effective in cleaning the surface revealing the expected features of a p-type diamond film.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kozlov, S. F., Stuck, R., Hage-Ali, M., Siffert, P., IEEE Trans, . Nucl. Sci. NS-22, 160 (1975).Google Scholar
Landstrass, M. and Fleetwood, D., Appl. Phys. Lett. 56, 2316 (1990).CrossRefGoogle Scholar
Kawarada, H., Aoki, M., Sasaki, H., and Tsugawa, K.: Diamond Relat. Mater. 3, 961 (1994).CrossRefGoogle Scholar
Fujishima, A., Einaga, Y., Rao, T.N., Tryk, D.A. (Eds.), Diamond Electrochemistry, Elsevier B.V, Amsterdam (2005).Google Scholar
Pietzka, C., Denisenko, A., Romanyuk, A., Schäfer, P., Kibler, L., Scharpf, J., Kohn, E., Diamond Relat. Mater. 19, 213 (2010).CrossRefGoogle Scholar
Kiyota, H., Okushi, H., Ando, T., Kamo, M., Sato, Y., Diamond Relat. Mater. 5, 718, (1996).CrossRefGoogle Scholar
Aizawa, T., Ando, T., Kamo, M. and Sato, Y., Phys. Rev. B, 48, 18348 (1993).CrossRefGoogle Scholar
Chiquito, A., Beregue, O., Diagonel, E., Galzerani, J., Moro, J., Journal of Applied Physics 101, 033714 (2007).CrossRefGoogle Scholar
Koné, S., Civrac, G., Schneider, H., Isoird, K., Issaoui, R., Achard, J., Gicquel, A., Diamond Relat. Mater. 19, 792 (2010).CrossRefGoogle Scholar
Synthetic diamond: emerging CVD science and technology; Spear, K.; Dismukes, J., John Wiley & Sons: New York, p.2140 (1994).Google Scholar
Kiyota, H., Matsushima, E., Sato, K., Okushi, H., Ando, T., Kamo, M., Sato, Y., Iida, M., Appl. Phys. Lett. 67, 3596 (1995).CrossRefGoogle Scholar
Mori, Y., Kawarada, H., Hiraki, A., Appl. Phys. Lett. 58, 940 (1991).CrossRefGoogle Scholar
Rutter, M. and Robertson, J., Phys. Rev. B 57, 9241 (1998).CrossRefGoogle Scholar