Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T15:49:18.415Z Has data issue: false hasContentIssue false

First-Principles study of HfO2/:GaAs interface passivation by Si and Ge

Published online by Cambridge University Press:  31 January 2011

Weichao Wang
Affiliation:
wcwang3279@gmail.com, Material Sciences and Engineering, Richardson, United States
Ka Xiong
Affiliation:
kaxiong0124@yahoo.com, Material Sciences and Engineering, Richardson, United States
Geunsik Lee
Affiliation:
leegeunsik@utdallas.edu, Department of Physics, Richardson, United States
Min Huang
Affiliation:
huangmin0225@hotmail.com, Department of Physics, Richardson, United States
Robery M. Wallace
Affiliation:
rmwallace@utdallas.edu, Material Sciences and Engineering, Richardson, United States
Kyeongjae Cho
Affiliation:
kjcho@utdallas.edu, Material Sciences and Engineering, Richardson, United States
Get access

Abstract

We investigated the HfO2:GaAs interface electronic structure and interface passivation by first principles calculations. The HfO2:GaAs interface of HfO2 terminated with four O atoms and GaAs terminated two Ga atoms is found to be the most energetically favorable. It is found that the interface states mainly arise from the interfacial charge mismatch, more specifically from the electron loss of interfacial As. Si or Ge as an interfacial passivating layer helps to maintain the charge of interfacial As and hence reduce the interface states.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hinkle, C.L., Sonnet, A.M., Milojevic, M., Aguirre-Tostado, F.S., Kim, H.C., Kim, J., Wallace, R.M., and Vogel, E. M., Appl. Phys. Lett., 93, 113506 (2008).Google Scholar
2 Winn, D.L., Hale, M. J., Grassman, T.J., Kummel, A. C., Droopad, R. and Passlack, M.. J. Chem. Phys., 126, 084703 (2007)Google Scholar
3 Ok, I., Kim, H., Zhang, M., Zhu, F., Park, S., Yum, J., Zhao, H., and Lee, J. C., Appl. Phys. Lett. 91, 132104 (2007)Google Scholar
4 Kim, H.S., Ok, I., Zhang, M., Choi, C., Lee, T., zhu, F., Thareja, G., Yu, L., and C. Lee, J., Appl. Phys. Lett., 88, 252906 (2006).Google Scholar
5 Tersoff, J., Phys. Rev. Lett. 52, 465 (1984).Google Scholar
6 Peacock, P. W., Xiong, K., Tse, K., and Robertson, J., Phys. Rev. B 73, 075328 (2006).Google Scholar
7 Kresse, G. and Furthmüller, J., Comput. Mater. Sci. 6, 15 (1996).Google Scholar
8 Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
9 Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993).Google Scholar
10 E. Blochl, P., Phys. Rev. B 50, 17953 (1994).Google Scholar
11 Kresse, G. and Hafner, J., J. Phys.: Condens. Matter 6, p8245 (1994).Google Scholar
12 Jiang, J., Gao, B., Han, T.-T., and Fu, Y., Appl. Phys. Lett., 94, 092110 (2009).Google Scholar
13 Wang, W., Lee, G., Huang, M., Wallace, R.M., and Cho, KJ, 5th international Symposium on Advanced Gate State Technology, P5, session 4, Austin, 2008.Google Scholar
14 Henkelman, G., Arnaldsson, A., and Jónsson, H., Comput. Mater. Sci. 36, 254 (2006).Google Scholar
15 Hinkle, C.L., Milojevic, M., Vogel, E.M., Wallace, R.M., Microelectron. Eng. (2009), doi:10.1016/j.mee.2009.03.030.Google Scholar
16 Kim, H.S., Ok, I., zhu, F., Zhang, M., Park, S., yum, J., Zhao, H., Majhi, P., Garcia-Gutierrez, D. I., Goel, J., Tsai, W., Gaspe, C. K., Santos, M. B., and Lee, Jack C., Appl. Phys. Lett., 93, 132902 (2008).Google Scholar
17 Magyari-kope, B., Park, S., Colombo, L., Nishi, Y., and Cho, Kyeongjae, J. Appl. Phys. 105, 013711 (2009).Google Scholar