Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T17:34:13.883Z Has data issue: false hasContentIssue false

Nanodot Formation in Thermally Annealed UHV-RTCVD Grown Si1-XGeX Epitaxial Layers on Silicon for Photovoltaics

Published online by Cambridge University Press:  20 September 2011

Abdennaceur Karoui*
Affiliation:
Photovoltaic Nanotechnology and Nanosensors Lab., Shaw University, Raleigh, NC 27601, USA 1 (919) 719 1998
Anita S. Ethiraj
Affiliation:
Photovoltaic Nanotechnology and Nanosensors Lab., Shaw University, Raleigh, NC 27601, USA 1 (919) 719 1998
*
Get access

Abstract

The surface and interface of SiGe layers on Si were found to incur drastic changes during layer rapid growth and post-growth rapid annealing. As deposited and thermal annealed samples were characterized using Energy dispersive X-ray Analysis (EDX) enhanced by Monte Carlo simulation for precise evaluation of Ge concentration. X-ray Diffraction (XRD) data exhibited a small shift of the SiGe (400) peak towards low 2θ values, which was attributed, primarily, to change in the Ge concentration. Confocal Raman Spectroscopy of samples showed regions of high and low strain that resulted from fluctuations in Ge concentrations. Nano- and submicronpyramidal features at the surface of Si1-xGex layers (x=17% and 28%) were revealed by Atomic Force Microscopy (AFM) and SEM. Additionally, pyramidal nanodots were revealed for [Ge]=17% samples and high density nanostructure for 28% appeared along the crosshatch strain pattern induced by misfit dislocations, when annealed at 700°C and 900°C, respectively. The observed Ge-rich nano-features, which were obtained with low thermal budget low cost techniques, are expected to be useful for bandgap engineering and third generation solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kolahdouz, M., Maresca, L., Ghandi, R., Khatibi, A., and Radamson, H. H. J. Electrochem. Soc., 158, (4), pp. H457H464 (2011).Google Scholar
2. Satoh, M., Arimoto, K., Nakagawa, K., Koh, S., Sawano, K., Shiraki, Y., Usami, N., Nakajima, K., Jap. J. Appl. Phys. 47, 4630 (2008).Google Scholar
3. Sun, P-H, Chang, S-T, Chen, Y-C, Lin, H, Solid-State Electronics, 54, 1216 (2010).Google Scholar
4. Lee, M-L, Dezsi, G., Venkatasubramanian, R., Thin Solid Films 518, S76 (2010).Google Scholar
5. Said, K., Poortmans, J., Caymax, M., Loo, R., Daami, A., Bremond, G., Kruger, O., Kittler, M., Thin Solid Films 337, 85 (1999).Google Scholar
6. Usami, N., Fujiwara, K., Pan, W., Nakajima, K., Jap. J. Appl. Phys. 44, 857 (2005).Google Scholar
7. HuaFan, Qi, Chen, C., Liao, X., Xiang, X., Zhang, S., Ingler, W., Adiga, N., Hub, Z., Cao, X., Dub, W., Deng, X., Solar Energy Materials & Solar Cells 94, 1300 (2010).Google Scholar
8. Kimura, Y., Sugii, N., Kimura, S., Inui, K., Hirasawa, W., Appl. Phys. Lett. 88, 031912 (2006).Google Scholar
9. Tsuchiya, T., Sakuraba, M., Murota, J., Thin Solid Films 508, 326 (2006).Google Scholar
10. Jang, C. H., Paik, S.I., Kim, Y., Lee, N., Appl. Phys. Lett. 90, 091915 (2007).Google Scholar
11. Zheng, S., Microelectronics J. 39, 53 (2008).Google Scholar
12. Yu, Z. Q., Zhang, Y., Wang, C., Shuttanandan, V., Lyubinetsky, I., Engelhard, M., Saraf, L., McCready, D., Henager, C., Nachimuthu, P., Thevuthasan, S., Nuclear Instruments and Methods in Phys. Res. B. 261, 723 (2007).Google Scholar
13. Valakh, M. Ya., Lytvyn, P.M., Nikolenko, A.S., Strelchuk, V.V., Krasilnik, Z.F., Lobanov, D. N., Novikov, A.V., Appl. Phys. Lett. 96, 141909 (2010).Google Scholar
14. Alonso, M. I., Winer, K., Phys. Rev. B. 39, 10056 (1989).Google Scholar
15. Tsang, J. C., Mooney, P. M., Dacol, F., Chu, J. O., J. Appl. Phys. 75(12), 8098 (1994).Google Scholar
16. Karoui, , et al. , (unpublished).Google Scholar
17. Han, G-Q., Zeng, Y-G, Yu, J-Z., Cheng, B-W., Chin. Phys. Lett. 25, 242 (2008).Google Scholar
18. Rastelli, A., Stoffel, M., Tersoff, J., Kar, G., Phys. Rev. Lett. 95, 026103 (2005).Google Scholar
19. Braga, N., Buczkowski, A., Kirk, H., and Rozgonyi, G., Appl. Phys. Lett. 64, 1410 (1994).Google Scholar