Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T08:36:49.441Z Has data issue: false hasContentIssue false

Investigation of GaNAsSb/GaAs and GaInNAsSb/GaNAs/GaAs Band Offsets

Published online by Cambridge University Press:  01 February 2011

Homan B. Yuen
Affiliation:
Solid State and Photonics Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305-4075
Robert Kudrawiec
Affiliation:
Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
K. Ryczko
Affiliation:
Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
S.R. Bank
Affiliation:
Solid State and Photonics Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305-4075
M.A. Wistey
Affiliation:
Solid State and Photonics Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305-4075
H.P. Bae
Affiliation:
Solid State and Photonics Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305-4075
J. Misiewicz
Affiliation:
Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
J.S. Harris Jr
Affiliation:
Solid State and Photonics Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305-4075
Get access

Abstract

Heterojunction band offsets of GaNAsSb/GaAs, GaInNAsSb/GaAs, and GaInNAsSb/GaNAs/GaAs quantum well (QW) structures were measured by photoreflectance (PR) spectroscopy. These samples were grown by solid-source molecular beam epitaxy using a radio-frequency nitrogen plasma source. PR spectra were collected from the QW structures and the energy transitions were obtained. The experimental data of the QW energy transitions were analyzed by theoretical calculations. Using predetermined values such as QW thickness and composition, unknown factors such as the heterojunction band offsets were able to be determined. For the GaN0.02As0.87Sb0.11/GaAs structure, we found that Qc≈0.5. For Ga0.62In0.38N0.026As0.954Sb0.02/GaAs, we found that Qc≈0.8. This value is similar to the antimony free dilute-nitride material GaInNAs since the small amount of antimony does not affect the band offsets. For the technologically important Ga0.61In0.39N0.023As0.957Sb0.02/GaN0.027As0.973/GaAs laser structure, we found that the GaInNAsSb/GaNAs QW had a conduction band offset of 144 meV and a valence band offset of 127 meV. With a greater understanding of the band structure, more advanced GaInNAsSb laser devices can be obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S., and Yazawa, Y., Jpn. J. Appl. Phys., Part 1, 35, 1273 (1996).Google Scholar
2 Larson, M.C., Coldren, C.W., Spruytte, S.G., Petersen, H.E., and Harris, J.S. Jr, 58th Dev. Rec. Conf., Denver, Colorado (2000).Google Scholar
3 Tansu, N., Kirsch, N.J., and Mawst, L.J., Appl. Phys. Lett., 81, 2523 (2002).Google Scholar
4 Johnson, R., Blasingame, V., Tatum, J., Schen, B., Mathes, D., Orenstain, J., Wang, T., Kim, J., Kwon, H., Ryou, J., Park, G., Kalweit, E., Chanhvongsak, H., Ringle, M., Marta, T., and Gieske, J., Vertical-Cavity Surface-Emitting Lasers V, J. Proc. SPIE, 4994, 222 (2003).Google Scholar
5 Soda, H., Iga, K., Kitahara, C., and Suematsu, Y., Jpn. J. Appl. Phys., 18, 2329 (1979).Google Scholar
6 Krispin, P., Gambin, V., Harris, J. S., and Ploog, K. H., J. Appl. Phys., 93, 6095 (2003).Google Scholar
7 Gambin, V., Ha, W., Wistey, M.A., Yuen, H.B., Bank, S.R., Kim, S.M., and Harris, J.S. Jr, IEEE J. Sel. Top. Quantum Electron., 8, 795 (2002).Google Scholar
8 Yang, X., Jurkovic, M.J., Heroux, J.B., and Wang, W.I., Appl. Phys. Lett., 75, 178 (1999).Google Scholar
9 Shimizu, H., Kumada, K., Uchiyama, S., and Kasukawa, A., Electron. Lett., 36, 1379 (2000).Google Scholar
10 Yang, X., Heroux, J.B., Mei, L.F., and Wang, W.I., Appl. Phys. Lett., 78, 4068 (2001).Google Scholar
11 Bank, S.R., Wistey, M.A., Goddard, L.L., Yuen, H.B., Lordi, V., and Harris, J.S., IEEE J. Quantum Electron., 40, 656 (2004).Google Scholar
12 Wistey, M.A., Bank, S.R., Yuen, H.B., Goddard, L.L., and Harris, J.S. Jr, Electron. Lett., 39, 1822 (2003).Google Scholar
13 Yuen, H.B., Bank, S.R., Wistey, M.A., Moto, A., and Harris, J.S. Jr, J. Appl. Phys., 96, 6375 (2004).Google Scholar
14 Misiewicz, J., Sitarek, P., Sek, G., and Kudrawiec, R., Mater. Sci., 21, 263 (2003).Google Scholar
15 Kudrawiec, R., Ryczko, K., Misiewicz, J., Yuen, H.B., Bank, S.R., Wistey, M.A., Bae, H.P., and Harris, J.S. Jr, Appl. Phys. Lett., 86, 141908 (2005).Google Scholar
16 Kudrawiec, R., Gladysiewicz, M., Misiewicz, J., Yuen, H.B., Bank, S.R., Wistey, M.A., Bae, H.P., and Harris, J.S. Jr, Appl. Phys. Lett., submitted.Google Scholar
17 Kudrawiec, R., Yuen, H.B., Ryczko, K., Misiewicz, J., Bank, S.R., Wistey, M.A., Bae, H.P., and Harris, J.S. Jr, J. Appl. Phys., 97, 053515 (2005).Google Scholar