Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T21:58:55.911Z Has data issue: false hasContentIssue false

Modification of Stress in CVD Tungsten Silicide (Polycide) Film by SiO2 Capping

Published online by Cambridge University Press:  21 March 2011

Joshua Pelleg
Affiliation:
Department of Materials Engineering, Ben Gurion University of the Negev Beer Sheva, 84105, Israel
E. Elish
Affiliation:
Department of Materials Engineering, Ben Gurion University of the Negev Beer Sheva, 84105, Israel
Get access

Abstract

Stresses in chemical vapor deposited polycide tungsten silicide (poly-Si/WSi2) wereevaluated at each stage of fabrication. The individual layers of the Si/SiO2/Poly-Si/WSi2/Poly-Si multilayer structure were deposited sequentially on separate wafers and subjected to x-ray diffraction analysis in the as deposited and annealed conditions to determine the changes in strain occurring in WSi2. Samples cut from wafers containing all the layers were capped with a 25nm thermal oxide and the strain in the WSi2 film was also analyzed by XRD. The change in strain of the WSi2 layer, following each step of the fabrication process, was evaluated by the lattice parameter variation of the c axis. The layers of the multilayered film affect the stress in the WSi2. A poly-Si layer on top of WSi2 reduces its stress, since it introduces a compressive component, which further decreases upon annealing. It also maintains a Si supply at the poly- Si/SiO2 interface, thus, eliminating Si outdiffusion during heat treatment in an oxygen containingambient. Capping the system by a thin oxide layer modifies the stress pattern of the WSi2, which becomes compressive.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Byun, J. S., Lee, B. H., Park, J. S., Sohn, D. K., Hong, J., Cho, W. J., Choi, S. J., and Kim, J. J., J. Electrochem. Soc. 146, 2261 (1999).Google Scholar
2. Telford, S. G., Eizenberg, M., Chang, M., Sinha, A. K., and Gow, T. R., J. Electrochem. Soc. 140, 3689 (1993).Google Scholar
3. Byun, J. S., Lee, B. H., Park, J. S., Sohn, D. K., Choi, S. J., and Kim, J. J., J. Electrochem. Soc. 145, 3228 (1998).Google Scholar
4. Joshi, R. V., Kim, Y. H., Wetzel, J. T., and Lin, T., Thin Solid Films 163, 267 (1988).Google Scholar
5. Washidzu, G., Hara, T., Miyamoto, T., and Inoue, T., Appl. Phys. Lett. 58, 1425 (1991).Google Scholar
6. Hara, T., Miyamoto, T., Hagiwara, H., Bromley, E. I., and Horshbarger, W. R., J. Electrochem. Soc. 137, 2955 (1990).Google Scholar
7. Adachi, J. Y., McIntosh, B. C., and Badt, D. E., Thin Solid Films 320, 128 (1998).Google Scholar
8. Nix, W. D., Met. Trans. 20A, 2217 (1989).Google Scholar
9. Towsend, P. H., Fulks, R. T., Vander, H. A. Plas, and Ho, J., in Materials Issues in Silicon Integrated Circuit Processing, edited by Wittmer, M., Stimmell, J., and Strathman, M. (Mat. Res. Soc. Proc. 71, Pittsburgh, 1986) p. 395.Google Scholar
10. Wu, T. H. T., Rosler, R. S., Lamartine, B. C., Gregory, R. B., and Tompkins, H. G., J. Vac. Sci. Technol. B6, 707 (1988).Google Scholar
11. Clark, T. E., J. Vac. Sci. Technol. B6, 1678 (1988).Google Scholar
12. Shioya, Y., Ikegami, K., Maeda, M., and Yanagida, K., J. Appl. Phys. 61, 561 (1987).Google Scholar
13. Ger, M. L. and Brown, R. B., J. of Mat. Res. 10, 1710 (1995).Google Scholar
14. Segmuller, A., Angilelo, J., and La Placa, S. J., J. Appl. Phys. 51, 6224 (1980).Google Scholar
15. Doerner, M. F. and Brennan, S., J. Appl. Phys. 63, 126 (1988).Google Scholar
16. Kuan, T. S. and Murakami, M., Met. Trans. 13A, 383 (1982).Google Scholar
17. Yamamoto, N. and Hosokawa, Y., Jpn. J. Appl. Phys. 27, 2203 (1988).Google Scholar
18. Fabricius, A., Nennewitz, O., Spiess, L., Cimalla, V., and Pezoldt, J., in Silicide Thin Films-Fabrication, Properties and Applications, edited by Tung, R., Maex, K., Pellegrini, P. W., and Allen, L. H. (Mat. Res. Soc. Proc. 402, Pittsburgh, 1996) p. 625.Google Scholar
19. Pan, J. T. and Blech, I., J. Appl. Phys. 55, 2874 (1984).Google Scholar
20. Tu, K. N., Mayer, J. W., and Feldman, L. C., Electronic Thin Film Science (Macmillan Publishing Company, New York, 1992), pp. 83, 86.Google Scholar
21. Angilello, J., d'Heurle, F., Peterson, S., and Segmuller, A., J. Vac. Sci. Technol. 17, 471 (1980).Google Scholar
22. Powder diffraction file, card 11 - 195, JCPDS - ICDD - International Center for Diffraction Data, Swarthmore, PA, 1991.Google Scholar
23 Christensen, A. N., J. Cryst. Growth 129, 266 (1993).Google Scholar
24. Obukhov, A. P., Gurin, V. N., Kozlova, I. R., Terenteva, Z. P., and Mazina, T. I., Inorganic Materials, 4, 452 (1968).Google Scholar
25. Verkhoglyadova, T. S., Vivchar, O. I., and Gladyshevskii, E. I., Soviet Powder Metallurgy and Metal Ceramics, 5, 316 (1966).Google Scholar
26. Kudielka, H. and Novotny, H., Monatshefts fuer Chemie, 87, 471 (1956).Google Scholar
27. Novotny, H., Kieffer, R., and Schachner, H., Monatshefts fuer Chemie, 83, 1243 (1952).Google Scholar
28. Retajczyk, T. F. and Sinha, A. K., Thin Solid Films 70, 241 (1980).Google Scholar
29. Tsai, M. Y., d'Heurle, F. M., Peterson, C. S., and Johnson, R. W., J. Appl. Phys. 52, 5350 (1982).Google Scholar