Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T15:34:10.734Z Has data issue: false hasContentIssue false

Ultrastructure of in vitro oocyte maturation in buffalo (Bubalus bubalis)

Published online by Cambridge University Press:  25 June 2010

Rafael Gianella Mondadori*
Affiliation:
Universidade Federal de Pelotas, Instituto de Biologia, Departamento de Morfologia, Av. Duque de Caxias, 250, Bairro Fragata, Pelotas–RS, 96030-002, Brazil.
Tiago Rollemberg Santin
Affiliation:
SQN 202, Bloco F, Apto 101, Brasilia – DF, Brazil.
Andrei Antonioni Guedes Fidelis
Affiliation:
SQS 216, Bloco C, Apto 203, Brasilia – DF, Brazil.
Khesller Patrícia Olázia Name
Affiliation:
Department of Cellular Biology, Institute of Biological Science, University of Brasilia, Brasilia–DF, Brazil.
Juliana Souza da Silva
Affiliation:
Department of Cellular Biology, Institute of Biological Science, University of Brasilia, Brasilia–DF, Brazil.
Rodolfo Rumpf
Affiliation:
Empresa Brasileira de Pequisa Agropecuária–EMBRAPA–CENARGEN, Brasília–DF, Brazil.
Sônia Nair Báo
Affiliation:
Department of Cellular Biology, Institute of Biological Science, University of Brasilia, Brasilia–DF, Brazil.
*
All correspondence to: Rafael Gianella Mondadori. Universidade Federal de Pelotas, Instituto de Biologia, Departamento de Morfologia, Av. Duque de Caxias, 250, Bairro Fragata, Pelotas–RS, 96030-002, Brazil. Tel/Fax: +55 53 3281 1326. e-mail: rmondadori@hotmail.com; rafael.mondadori@ufpel.edu.br.

Summary

The objective of the present study was to describe ultrastructural changes in the nucleus and cytoplasmic organelles during in vitro maturation (IVM) of buffalo cumulus–oocyte complexes (COCs). The structures were collected by ovum pick-up (OPU). Some COCs, removed from maturation medium at 0, 6, 12, 18 and 24 h, were processed for transmission electron microscopy. The average number of COCs collected by OPU/animal/session was 6.4, and 44% of them were viable. Immature oocytes had a peripherally located nucleus, Golgi complex and mitochondrial clusters, as well as a large number of coalescent lipid vacuoles. After 6 h of IVM, the oocyte nucleus morphology changed from round to a flatter shape, and the granulosa cells (GC) lost most of their contact with zona pellucida (ZP). At 12 h the first polar body was extruded and the aspect of lipid droplet changed to dark, probably denoting lipid oxidation. Cortical granules were clearly visible at 18 h of maturation, always located along the oocyte periphery. At 24 h of IVM the number of cortical granules increased. Ultrastructure studies revealed that: (1) immature oocytes have a high lipid content; (2) the perivitelline space (PS) increases during IVM; (3) Golgi complexes and mitochondrial clusters migrate to oocyte periphery during IVM; (4) 6 h of IVM are enough to lose contact between GC and ZP; (5) the oocyte lipid droplets’ appearance changes between 6 and 12 h of IVM.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baruselli, P.S. & Carvalho, N.A.T. (2003). Controle do desen-volvimento folicular para o emprego de biotecnologias da reprodução em bubalinos (Bubalus bubalis). Rev. Bras. Repr. Anim. 27, 94102.Google Scholar
Baruselli, P.S., Carvalho, N.A.T., Cavalcante, A.K.S., Nichi, M. & Zicarelli, L. (2003). Use of rBST associated to a protocol for multiple ovulation and embryo transfer in buffalo (Bubalus bubalis). In: Proceedings of 2nd Congresso Nazionale Sull'Allevamento Del Buffalo, Roma. pp. 269–73.Google Scholar
Baruselli, P.S., Gimenes, L.U., Carvalho, N.A.T., Sá Filho, M.F., Ferraz, M.L. & Barnabé, R.C. (2007). O estado atual da biotecnologia reprodutiva em bubalinos: perspectiva de aplicação comercial. Rev. Bras. Reprod. Anim. 31, 285–92.Google Scholar
Boni, R., Santella, L., Dale, B., Roviello, S., Di Palo, R. & Barbieri, V. (1992). Maturazione in vitro di oociti buffalini: indagine ultrastrutturale. Acta Med. Vet. 38, 153–61.Google Scholar
Carvalho, N.A.T. (2001). Uso do agonista de GnRH deslorelina, associado ao LH, para a superovulação de fêmeas bubalinas (Bubalus bubalis). Dissertação Mestrado em Reprodução Animal–Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo. São Paulo.Google Scholar
Chen, L., Wert, S.E., Hendrix, E.M., Russel, P.T., Cannon, M. & Larsen, W.J. (1990). Hyaluronic acid synthesis are necessary for normal expansion of the cumulus mass. Mol. Reprod. Dev. 26, 236–47.CrossRefGoogle ScholarPubMed
Cran, D.G. & Cheng, W.T.K. (1985). Changes in cortical granules during porcine oocyte maturation. Gamete Res. 11, 311–9.CrossRefGoogle Scholar
Drost, M. (2007). Advanced reproductive technology in the water buffalo. Theriogenology 68, 450–3.CrossRefGoogle ScholarPubMed
Fair, T. & Hyttel, P. (1997). Oocyte growth in cattle – ultrastructure, transcription and developmental competence. In: Motta, P. (ed.) Microscopy of Reproduction and Development: A Dynamic Approach. pp. 109–118.Google Scholar
Ferraz, M.L., Gimenes, L.U., Sá Filho, M.F., Watanabe, Y.F., Joaquim, D.C., Accorsi, M.F., Meirelles, F.V. & Baruselli, P.S. (2007). Effect of OPU and bST treatment on embryo production in buffalo. In: Proceedings of the World Buffalo Congress, Caserta, Italy.Google Scholar
Fresicce, G.A. (2007). Reproduction in the water buffalo. Reprod. Dom. Anim. 42, 2432.CrossRefGoogle Scholar
Gasparrini, B. (2002). In vitro embryo production in buffalo species: state of the art. Theriogenology 7, 237–56.CrossRefGoogle Scholar
Gasparrini, B., Neglia, G., Di Palo, R., Campanile, G. & Zicarelli, L. (2000). Effect of cysteamine during in vitro maturation on buffalo embryo development. Theriogenology 54, 1537–42.CrossRefGoogle ScholarPubMed
Gasparrini, B., Boccia, L., Marchandise, J., Di Palo, R., George, F., Donnay, I. & Zicarelli, L. (2006). Enrichment of in vitro maturation medium for buffalo (Bubalus bubalis) oocytes with thiol compounds: effects of cystine on glutathione synthesis and embryo development. Theriogenology 65, 275–87.CrossRefGoogle ScholarPubMed
Gasparrini, B., De Rosa, A., Attanasio, L., Boccia, L., Di Palo, R., Campanile, G. & Zicarelli, L. (2008). Influence of the duration of in vitro maturation and gamete co-incubation on the efficiency on in vitro embryo development in Italian Mediterranean buffalo (Bubalus bubalis). Anim. Reprod. Sci. 105, 354–64.CrossRefGoogle ScholarPubMed
Gupta, P.S.P., Ravindranatha, B.M., Nandi, S. & Sarma, P.V. (2002). In vitro maturation of buffalo oocytes with an epidermal growth factor and fibroblast growth factor. Ind. J. Anim. Sci. 72, 23–6.Google Scholar
Hyttel, P. & Madsen, I. (1987). Rapid method to prepare mammalian oocytes and embryos for transmission electron microscopy. Acta Anat. 129, 12–4.CrossRefGoogle ScholarPubMed
Hyttel, P., Xu, K.P., Smith, S. & Greve, T.U. (1986). Ultrastructure of in vitro oocyte maturation in cattle. Reprod. Fert. 78, 615–25.CrossRefGoogle ScholarPubMed
Hyttel, P., Fair, T., Callesen, H. & Greve, T. (1997). Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47, 2332.CrossRefGoogle Scholar
Kacinskis, M.A., Lucci, C.M., Luque, M.C.A. & Bao, S.N. (2005). Morphometric and ultrastructural characterization of Bos indicus preantral follicles. Anim. Reprod. Sci. 47, 4557.CrossRefGoogle Scholar
Kafi, M., Mesbah, F., Nili, H. & Khalili, A. (2005). Chronological and ultrastructural changes in camel (Camelus dromedarius) oocytes during in vitro maturation. Theriogenology 63, 2458–70.CrossRefGoogle ScholarPubMed
Liang, X.W., Lu, Y.Q., Chen, M.T., Zhang, X.F., Lu, S.S., Zhang, M., Pang, C.Y., Huang, F.X. & Lu, K.H. (2008). In vitro embryo production in buffalo (Bubalus bubalis) using sexed sperm and oocytes from ovum pick up. Theriogenology 69, 822–6.CrossRefGoogle ScholarPubMed
Manik, R.S., Singla, S.K., Palta, P. & Chauhan, M.S. (2002). Ultrasonographic study of ovulation in buffalo following natural oestrus and after synchronization of oestrus by treatment with prostaglandin or norgestomed and estradiol valerate. Ind. J. Anim. Sci. 72, 145–7.Google Scholar
Manjunatha, B.M., Ravindra, J.P., Gupta, P.S.P., Devaraj, M. & Nandi, S. (2008). Oocyte recovery by ovum pick up and embryo production in river buffaloes (Bubalus bubalis). Reprod. Dom. Anim. 43, 477–80.CrossRefGoogle ScholarPubMed
Manjunatha, B.M., Ravindra, J.P., Gupta, P.S.P., Devaraj, M. & Nandi, S. (2009). Effect of breeding season on in vivo oocyte recovery and embryo production in non-descriptive Indian river buffaloes (Bubalus bubalis). Anim. Reprod. Sci. 111, 376–83.CrossRefGoogle ScholarPubMed
Merchant, H. & Chang, M.C. (1971). An electron microscopic study of mouse eggs matured in vivo and in vitro. Anat. Rec. 171, 2138.CrossRefGoogle ScholarPubMed
Misra, A.K., Kasiraj, R., Mutha Rao, M., Ragareddy, N.S., Jaiswal, R.S & Pant, H.C. (1998). Rate of transport and development of preimplantation embryo in the superovulated buffalo (Bubalus bubalis). Theriogenology 50, 637–49.CrossRefGoogle ScholarPubMed
Mondadori, R.G., Luque, M.C.A., Santin, T.R. & Bao, S.N. (2007). Ultrastructural and morphometric characterization of buffalo (Bubalus bubalis) ovarian preantral follicles. Anim. Reprod. Sci. 97, 323–33.CrossRefGoogle ScholarPubMed
Mondadori, R.G., Santin, T.R., Fidelis, A.A.G., Porfirio, E. & Bao, S.N. (2008). Buffalo (Bubalus bubalis) preantral follicle population and ultrastructural characterization of antral follicle oocyte. Reprod. Dom. Anim. Epub ahead of print.Google Scholar
Moreira, F.C., Risco, M.F.A., Pires, J.D., Ambrose, M., Drost, M. & Delorenzo, W.W. (2000). The effect of body condition on reproductive efficiency of lactating dairy cows receiving a timed insemination. Theriogenology 53, 1305–19,.CrossRefGoogle ScholarPubMed
Nagano, M., Katagiri, S. & Takahashi, Y. (2006). Relationship between bovine oocyte morphology and in vitro developmental potential. Zygote 14, 5361.CrossRefGoogle ScholarPubMed
Nandi, S., Raghu, H.M., Ravindranatha, B.M. & Chauan, M.S. (2002a). Production of buffalo (Bubalus bubalis) embryos in vitro: premises and promises. Reprod. Dom. Anim. 37, 6574.CrossRefGoogle ScholarPubMed
Nandi, S., Ravindranatha, B.M., Gupta, P.S.P. & Sarma, P.V. (2002b). Timing of sequential changes in cumulus cells and first polar body extrusion during in vitro maturation of buffalo oocytes. Theriogenology 57, 1151–9.CrossRefGoogle ScholarPubMed
O'Brien, J.K., Dwarte, D., Ryan, J.P., Maxwell, W.M. & Evans, G. (2005). Developmental capacity, energy metabolism and ultrastructure of mature oocytes from prepubertal and adult sheep. Reprod. Fertil. Dev. 8, 1029–37.CrossRefGoogle Scholar
Sá Filho, M.F., Carvalho, N.A.T., Gimenes, L.U., Torres Júnior, J.F., Garcia, J.M., Tonhati, H., Gasparrini, B. & Baruselli, P.S. (2005). Efeito do bST na população folicular, na qualidade oocitária e na taxa de recuperação in vivo de oócitos em fêmeas bubalinas. In: Anais do Congresso Brasileiro de Reprodução Animal, vol. 16.Google Scholar
Santos, S.S.D., Dantas, J.K., Miranda, M.S. & Ohashi, O.M. (2002). Cinética da maturação nuclear in vitro de oócitos bubalinos. Braz. J. Vet. Res. Anim. Sci. 39, 266–70.CrossRefGoogle Scholar
Singh, J., Nanda, A.S. & Adams, G.P. (2000). The reproductive pattern and efficiency of female buffaloes. Anim. Reprod. Sci. 60–61, 593604.CrossRefGoogle ScholarPubMed
Suzuki, H., Jeong, B.S. & Yang, X. (2000). Dynamic changes of cumulus–oocyte cell communication during in vitro maturation of porcine oocytes. Biol. Reprod. 63, 723–9.Google ScholarPubMed
Yadav, B.R., Katiyar, P.K., Chauhan, M.S. & Madan, M.L. (1997). Chromosome configuration during in vitro maturation of goat, sheep and buffalo oocytes. Theriogenology 47, 943–51.CrossRefGoogle ScholarPubMed
Zamboni, L. & Thomson, R.S. (1972). Fine morphology of human oocyte maturation in vitro. Biol. Reprod. 7, 425–57.CrossRefGoogle ScholarPubMed
Zhang, L., Jiang, S., Wozniak, P.J., Yang, X. & Godke, R.A. (1995). Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro. Mol. Reprod. Dev. 40, 338–44.CrossRefGoogle ScholarPubMed