Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T08:33:48.924Z Has data issue: false hasContentIssue false

An Amorphous Silicon Photoconductor for UV Detection

Published online by Cambridge University Press:  01 February 2011

Matthias Hillebrand
Affiliation:
Institute for Microsystem Technologies (IMT), Universität Siegen, D-57068 Siegen, Germany
Frank Blecher
Affiliation:
Now with LambdaLab, Kohlbettstraße 20, D-57072 Siegen, Germany
Jürgen Sterzel
Affiliation:
Now with Jena Optronik GmbH, Prüssingstraße 41, D-07745 Jena, Germany
Markus Böhm
Affiliation:
Institute for Microsystem Technologies (IMT), Universität Siegen, D-57068 Siegen, Germany
Get access

Abstract

An amorphous silicon photoconductor to detect wavelengths between 180 nm to 550 nm without scintillator is presented. The photoconductor is based on a coplanar configuration of the electrodes, similar to measurement structures to determine material characteristics of amorphous layers, e.g. for the Constant Photocurrent Method (CPM). After passing through a thin transparent passivation layer, the incident radiation is directly absorbed in the intrinsic a-Si:H material. The carrier collecting electrical field is applied perpendicular to the incoming light. Test structures have been fabricated with 80 nm thick sputtered chromium contacts on top of a 60 nm carbonized hydrogenated i-layer and a SixNx passivation layer with a thickness of about 36 nm. The spacing between the Schottky contacts is varied between 3 μm and 100 μm. They are deposited on top or below the a-SiC:H layer. First experiments with this simple coplanar design show that with an increasing voltage a shift towards UV wavelengths can be observed. The new UV detector is applicable in the field of TFA image sensors (Thin Film on ASIC) and in the new Lab-on-a-Chip concept presently under development at the institute for microsystem technologies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Huang, C.Y.W., Salupo, C., Szabo, L.F., Cesar, G.P., Javurek, W., in Amorphous Technology, edited by Madan, A., Thompson, M.J., Taylor, P.C., LeComber, P.G. Hamakawa, Y., (Mater. Res. Soc. Proc. 118, Pittsburgh, PA, 1988) pp. 411416.Google Scholar
2. Fang, Y.K., Hwang, S.B., Chen, K.H., Lui, C.R., Tsai, M.J., Kuo, L.C., IEEE Trans. Elec. Dev., 39(2), pp. 180185 (1992).Google Scholar
3. Maddracci, P., Rastello, M.L., Rava, P., Guiliani, F., Giorgis, F., Thin Solid Films 337, pp. 232234 (1999).Google Scholar
4. Cesare, G. de, Irrera, F., Palma, F., Tucci, M., Appl. Phys. Lett., 67(3), pp. 234236 (1995).Google Scholar
5. Mütze, F., Seibel, K., Schneider, B., Hillebrand, M., Blecher, F., Lulé, T., Keller, H., Wagner, M., Rieve, P., Böhm, M., in Amorphous and Heterogeneous Silicon Thin Films: Fundamentals Device Technology, edited by Branz, H.M., Collins, R.W., Okamoto, H., Guha, S., Schropp, R., (Mater. Res. Soc. Proc. 557, Pittsburgh, PA, 1999) pp. 815820.Google Scholar
6. Avila, A., Asomoza, R., Solid-State Electron. 44, pp. 1727 (2000).Google Scholar
7. Srivastava, A., Agrawal, S.C., J. Non-Crys. Solids 227-230, pp. 259262 (1998).Google Scholar
8. Shung, J.Y., Hsu, K.Y.J., Jiang, Y.L., Tsai, H.J., Thin Solid Films, 337, pp. 226231 (1999).Google Scholar
9. Kim, S.K., Choi, Y.J., Cho, K.S., Jang, J., IEEE Trans. Elec. Dev. 46, pp. 10011006 (1999).Google Scholar
10. Schneider, B., Rieve, P., Böhm, M., in Handbook of Computer Vision and Applications, ed. by Jähne, B., Haußecker, H., Geißler, P. (Academic Press, Boston, 1998) pp. 237270.Google Scholar
11 Schäfer, H., Chemnitz, S., Schumacher, S., Koziy, V., Fischer, A., Meixner, A.J., Ehrhardt, D., Böhm, M., presented at the Proc. SPIE Microtechnologies for the New Millennium 2003 conference, Maspalomas, Spain (2003).Google Scholar
12. Gadelrab, S.M., Chamberlain, S.G., IEEE Trans. Elec. Dev., 44(10), pp. 17891794 (1997).Google Scholar
13 Böhm, M., Scheer, H.C., Wagemann, H.G., Solar Cells, 13, pp. 2941 (1984)Google Scholar
14. Stapinski, T., Ambrosone, G., Coscia, U., Giorgis, F., Pirri, C.F., Physica B, 254, pp. 99106 (1998).Google Scholar