Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T10:05:30.940Z Has data issue: false hasContentIssue false

Low-cost lithographically patterned source/drain bottom contacts for high mobility p-type organic thin film transistors

Published online by Cambridge University Press:  11 July 2012

Robert Mueller
Affiliation:
imec, Kapeldreef 75, B-3001 Leuven, Belgium
Steve Smout
Affiliation:
imec, Kapeldreef 75, B-3001 Leuven, Belgium
Myriam Willegems
Affiliation:
imec, Kapeldreef 75, B-3001 Leuven, Belgium
Jan Genoe
Affiliation:
imec, Kapeldreef 75, B-3001 Leuven, Belgium
Paul Heremans
Affiliation:
imec, Kapeldreef 75, B-3001 Leuven, Belgium KULeuven, Dpt ESAT, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
Get access

Abstract

Short channel organic thin film transistors in bottom-gate, bottom contact configuration use typically gold metallization for the source and drain contacts because this metal can easily be cleaned from photoresist residuals by oxygen plasma or ultraviolet-ozone and allows also surface modification by self-assembled monolayers (e.g. thiols). Alternative low-cost bottom contact metallization for high performance short-channel organic thin film transistors are scarce because of the incompatibility of the bottom contact material with the cleaning step. In this work a new process flow, involving a temporary thin aluminum protection layer, is presented. Short channel (3.4 μm) pentacene transistors with lithographical defined and thiol modified silver source/drain bottom contacts (25 nm thick, on a 2 nm titanium adhesion layer) prepared according to this process achieved a saturation mobility of 0.316 cm2/(V.s), and this at a metal cost below 1% of the standard 30 nm thick gold metallization.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Myny, K., Steudel, S., Vicca, P., Beenhakkers, M. J., van Aerle, N.A.J.M., Gelinck, G.H., Genoe, J., Dehaene, W., Heremans, P., Sol. State Electron. 53, 1220 (2009).Google Scholar
2. Myny, K., van Veenendaal, E., Gelinck, G.H., Genoe, J., Dehaene, W. and Heremans, P., IEEE J. Sol.-State Circ. 47, 284 (2012).Google Scholar
3. De Leeuw, D.M., Gelinck, G.H., Geuns, T.C.T., van Veenendaal, E., Cantatore, E. and Huisman, B.H., IEDM Tech. Dig., 293 (2002).Google Scholar
4. Gelinck, G., Heremans, P., Nomoto, K., and Anthopoulos, T.D., Adv. Mater. 22, 3778 (2010).Google Scholar
5. Müller, R., Smout, S., Rolin, C., Genoe, J. and Heremans, P., Org. Electr. 12, 1227 (2011).Google Scholar
6. Klauk, H., Schmid, G., Radlik, W., Weber, W., Zhou, L., Sheraw, C.D., Nichols, J.A., Jackson, T.N. Sol. State Electron. 47, 297 (2003).Google Scholar
7. Kim, H., Auyeung, R.C.Y., Lee, S.H., Huston, A.L., and Pique, A., Appl. Phys. A 96, 441 (2009) H.-Y. Chen, I.-W. Wu, C.-T. Chen, S.-W. Liu, C.-I. Wu, Org. Electron. 13, 593 (2012) Google Scholar
8. Acton, O., Dubey, M., Weidner, T., O’Malley, K.M., Kim, T.-W., Ting, G.G., Hutchins, D., Baio, J.E., Lovejoy, T.C., Gage, A.H., Castner, D.G., Ma, H., and Jen, A.K.-Y., Adv. Funct. Mat. 21, 1476 (2011)Google Scholar
9. Jeong, J., Kim, M., Lee, S.-H., Kim, D., Kim, T., and Hong, Y., IEEE Electron. Dev. Lett. 32, 1758 (2011).Google Scholar
10. Yoneya, N., Noda, M., Hirai, N., Nomoto, K., Wada, M., and Kasahara, J., Appl. Phys. Lett. 85, 4663 (2004).Google Scholar
11. De Vusser, S., Steudel, S., Myny, K., Genoe, J., and Heremans, P., Appl. Phys. Lett. 88, 103501 (2006).Google Scholar
12. Metal prices of Oct. 25th 2011 from www.metalprices.com Google Scholar
13. CRC Handbook of Chemistry and Physics, 64th edition, 1983-1984, CRC Press, Boca Raton (Fl), pp. B-94 and B-118.Google Scholar
14. CRC Handbook of Chemistry and Physics, 64th edition, 1983-1984, CRC Press, Boca Raton (Fl), p. F125.Google Scholar