Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T08:08:52.727Z Has data issue: false hasContentIssue false

Film thickness dependent microstructural changes of thick copper metallizations upon thermal fatigue

Published online by Cambridge University Press:  13 June 2017

Stephan Bigl*
Affiliation:
Department of Materials Physics, Montanuniversität Leoben, Leoben 8700, Austria
Claus O.W. Trost
Affiliation:
Department of Materials Physics, Montanuniversität Leoben, Leoben 8700, Austria
Stefan Wurster
Affiliation:
Department of Materials Physics, Montanuniversität Leoben, Leoben 8700, Austria
Megan J. Cordill
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Leoben 8700, Austria
Daniel Kiener
Affiliation:
Department of Materials Physics, Montanuniversität Leoben, Leoben 8700, Austria
*
a)Address all correspondence to this author. e-mail: stephan-paul.bigl@stud.unileoben.ac.at
Get access

Abstract

With increasing performance requirements in power electronics, the necessity has emerged to investigate the thermo-mechanical behavior of thick Cu metallizations (≥5 µm). Cu films on rigid substrates in the range of 5–20 µm were thermally cycled between 170 and 400 °C by a fast laser device. Compared to the initial microstructures, a texture transition toward the {100} out-of-plane orientation with increasing film thickness was observed during thermo-mechanical cycling, along with an abnormal grain growth in the {100}-oriented grains and a gradual development of substructures in a crystallographic arrangement. Compared to the well-studied thin Cu film counterparts (≤5 µm), the surface damage showed a 1/hf dependency. Transition from an orientation independent (hf = 5 µm) to an orientation specific thermo-mechanical fatigue damage (hf = 10, 20 µm) was observed following a higher damager tolerance in {100} oriented grains.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: George M. Pharr

References

REFERENCES

Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8), 114117 (1965).Google Scholar
Nelhiebel, M., Illing, R., Schreiber, C., Wöhlert, S., Lanzerstorfer, S., Ladurner, M., Kadow, C., Decker, S., Dibra, D., Unterwalcher, H., Rogalli, M., Robl, W., Herzig, T., Poschgan, M., Inselsbacher, M., Glavanovics, M., and Fraissé, S.: A reliable technology concept for active power cycling to extreme temperatures. Microelectron. Reliab. 51(9–11), 19271932 (2011).Google Scholar
Flinn, P.A., Gardner, D.S., and Nix, W.D.: Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history. IEEE Trans. Electron Devices 34(3), 689699 (1987).Google Scholar
Nelhiebel, M., Illing, R., Detzel, T., Wöhlert, S., Auer, B., Lanzerstorfer, S., Rogalli, M., Robl, W., Decker, S., Fugger, J., and Ladurner, M.: Effective and reliable heat management for power devices exposed to cyclic short overload pulses. Microelectron. Reliab. 53(9–11), 17451749 (2013).Google Scholar
Robl, W., Melzl, M., Weidgans, B., Hofmann, R., and Stecher, M.: Last metal copper metallization for power devices. IEEE Trans. Semicond. Manuf. 21(3), 358362 (2008).Google Scholar
Zhou, X. and Wadley, H.: Twin formation during the atomic deposition of copper. Acta Mater. 47(3), 10631078 (1999).Google Scholar
Wikström, A. and Nygårds, M.: Anisotropy and texture in thin copper films—An elasto-plastic analysis. Acta Mater. 50(4), 857870 (2002).Google Scholar
Thompson, C. and Carel, R.: Grain growth and texture evolution in thin films. Mater. Sci. Forum, 204–206, 8398 (1996).CrossRefGoogle Scholar
Sonnweber-Ribic, P., Gruber, P., Dehm, G., and Arzt, E.: Texture transition in Cu thin films: Electron backscatter diffraction vs. X-ray diffraction. Acta Mater. 54(15), 38633870 (2006).Google Scholar
Zhang, G.P., Volkert, C.A., Schwaiger, R., Wellner, P., Arzt, E., and Kraft, O.: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54(11), 31273139 (2006).CrossRefGoogle Scholar
Kraft, O., Wellner, P., Hommel, M., Schwaiger, R., and Arzt, E.: Fatigue behavior of polycrystalline thin copper films. Z. Metallkd. 93(5), 392400 (2002).Google Scholar
Mönig, R., Keller, R.R., and Volkert, C.A.: Thermal fatigue testing of thin metal films. Rev. Sci. Instrum. 75(11), 49975004 (2004).Google Scholar
Heinz, W., Robl, W., and Dehm, G.: Influence of initial microstructure on thermomechanical fatigue behavior of Cu films on substrates. Microelectron. Eng. 137, 510 (2015).CrossRefGoogle Scholar
Kraft, O., Schwaiger, R., and Wellner, P.: Fatigue in thin films: Lifetime and damage formation. Mater. Sci. Eng., A 319–321, 919923 (2001).Google Scholar
Bigl, S., Wurster, S., Cordill, M.J., and Kiener, D.: Advanced characterisation of thermo-mechanical fatigue mechanisms of different copper film systems for wafer metallizations. Thin Solid Films 612, 153164 (2016).CrossRefGoogle Scholar
Zhang, G.P., Schwaiger, R., Volkert, C.A., and Kraft, O.: Effect of film thickness and grain size on fatigue-induced dislocation structures in Cu thin films. Philos. Mag. Lett. 83(8), 477483 (2003).Google Scholar
Schwaiger, R., Dehm, G., and Kraft, O.: Cyclic deformation of polycrystalline Cu films. Philos. Mag. A 83(6), 693710 (2003).CrossRefGoogle Scholar
Hommel, M., Kraft, O., and Arzt, E.: A new method to study cyclic deformation of thin films in tension and compression. J. Mater. Res. 14(06), 23732376 (1999).Google Scholar
Zhang, G.P., Volkert, C.A., Schwaiger, R., Arzt, E., and Kraft, O.: Damage behavior of 200-nm thin copper films under cyclic loading. J. Mater. Res. 20(01), 201207 (2005).Google Scholar
Aicheler, M., Sgobba, S., Arnau-Izquierdo, G., Taborelli, M., Calatroni, S., Neupert, H., and Wuensch, W.: Evolution of surface topography in dependence on the grain orientation during surface thermal fatigue of polycrystalline copper. Int. J. Fatigue 33(3), 396402 (2011).Google Scholar
Mönig, R.: Thermal fatigue of Cu thin films. PhD dissertation, Max Planck Institute (2005).Google Scholar
Baker, S.P., Kretschmann, A., and Arzt, E.: Thermomechanical behavior of different texture components in Cu thin films. Acta Mater. 49(12), 21452160 (2001).Google Scholar
Akiniwa, Y., Suzuki, T., and Tanaka, K.: Evaluation of deformation behavior in Cu thin film under tensile and fatigue loading by X-ray method. Mater. Sci. Forum 55, 807812 (2006).CrossRefGoogle Scholar
Bigl, S., Wurster, S., Cordill, M.J., and Kiener, D.: Site specific microstructural evolution of thermo-mechanically fatigued copper films. Berg- Huettenmaenn. Monatsh. 160(5), 235239 (2015).CrossRefGoogle Scholar
Wimmer, A., Smolka, M., Heinz, W., Detzel, T., Robl, W., Motz, C., Eyert, V., Wimmer, E., Jahnel, F., and Treichler, R.: Temperature dependent transition of intragranular plastic to intergranular brittle failure in electrodeposited Cu micro-tensile samples. Mater. Sci. Eng., A 618, 398405 (2014).Google Scholar
Bigl, S., Schöberl, T., Wurster, S., Cordill, M.J., and Kiener, D.: Correlative microstructure and topography informed nanoindentation of copper films. Surf. Coat. Technol. 308, 404413 (2016).Google Scholar
Bigl, S., Heinz, W., Kahn, M., Schoenherr, H., and Cordill, M.J.: High-temperature characterization of silicon dioxide films with wafer curvature. JOM 67(12), 29022907 (2015).Google Scholar
Wurster, S., Bigl, S., Cordill, M.J., and Kiener, D.: Accelerated thermo-mechanical fatigue of copper metallizations studied by pulsed laser heating. Microelectron. Eng. 167, 110118 (2016).Google Scholar
Hahn, T.A.: Thermal expansion of copper from 20 to 800 K—Standard reference material 736. J. Appl. Phys. 41(13), 50965101 (1970).Google Scholar
Swenson, C.: Recommended values for the thermal expansivity of silicon from 0 to 1000 K. J. Phys. Chem. Ref. Data 12(2), 179182 (1983).CrossRefGoogle Scholar
Chavez, K. and Hess, D.: A novel method of etching copper oxide using acetic acid. J. Electrochem. Soc. 148(11), G640G643 (2001).Google Scholar
Nečas, D. and Klapetek, P.: Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 10(1), 181188 (2012).Google Scholar
Sonnweber-Ribic, P., Gruber, P.A., Dehm, G., Strunk, H.P., and Arzt, E.: Kinetics and driving forces of abnormal grain growth in thin Cu films. Acta Mater. 60(5), 23972406 (2012).CrossRefGoogle Scholar
Ledbetter, H. and Naimon, E.: Elastic properties of metals and alloys. II. Copper. J. Phys. Chem. Ref. Data 3(4), 897935 (1974).Google Scholar
Rösler, J., Harders, H., and Baeker, M.: Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers, and Composites (Springer Science & Business Media, Berlin Heidelberg, Germany, 2007).Google Scholar
Zielinski, E.M., Vinci, R.P., and Bravman, J.C.: Effects of barrier layer and annealing on abnormal grain growth in copper thin films. J. Appl. Phys. 76(8), 45164523 (1994).Google Scholar
Flinn, P.A.: Measurement and interpretation of stress in copper films as a function of thermal history. J. Mater. Res. 6(7), 14981501 (1991).Google Scholar
Weiss, D.: Deformation mechanisms in pure and alloyed copper films. PhD dissertation, Universität Stuttgart, Stuttgart, (2000).Google Scholar
Cocks, A.C.F. and Ashby, M.F.: On creep fracture by void growth. Prog. Mater. Sci. 27(3), 189244 (1982).CrossRefGoogle Scholar
Thompson, C.V. and Carel, R.: Texture development in polycrystalline thin films. Mater. Sci. Eng., B 32(3), 211219 (1995).Google Scholar
Field, D., True, B., Lillo, T., and Flinn, J.: Observation of twin boundary migration in copper during deformation. Mater. Sci. Eng., A 372(1), 173179 (2004).CrossRefGoogle Scholar
Calcagnotto, M., Ponge, D., Demir, E., and Raabe, D.: Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng., A 527(10), 27382746 (2010).Google Scholar
Wright, S.I., Nowell, M.M., and Field, D.P.: A review of strain analysis using electron backscatter diffraction. Microsc. Microanal. 17(3), 316329 (2011).Google Scholar
Charsley, P. and Kuhlmann-Wilsdorf, D.: Configurations of {100} dislocation walls formed during fatigue. Philos. Mag. A 44(6), 13511361 (1981).Google Scholar
Saxlová, M. and Kratochvíl, J.: A theory of dipolar dislocation wall structures. Mater. Sci. Eng., A 188(1–2), 6979 (1994).CrossRefGoogle Scholar
Read, W. and Shockley, W.: Dislocation models of crystal grain boundaries. Phys. Rev. A 78(3), 275 (1950).Google Scholar
Zhang, J-M., Xu, K-W., and Ji, V.: Competition between surface and strain energy during grain growth in free-standing and attached Ag and Cu films on Si substrates. Appl. Surf. Sci. 187(1–2), 6067 (2002).CrossRefGoogle Scholar
Gadelmawla, E.S., Koura, M.M., Maksoud, T.M.A., Elewa, I.M., and Soliman, H.H.: Roughness parameters. J. Mater. Process. Technol. 123(1), 133145 (2002).Google Scholar
Ahlberg, J., Nilson, E., and Walsh, J.: The Theory of Splines and Their Applications, Mathematics in Science and Engineering (Academic Press, New York, 1967).Google Scholar