Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-16T06:57:04.905Z Has data issue: false hasContentIssue false

A Low Electron Voltage Approach to Increase Spatial Resolution of Temperature Mapping in Thermal Scanning Electron Microscopy

Published online by Cambridge University Press:  15 April 2013

Xiaowei Wu*
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, U.S.A.
Robert Hull
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, U.S.A.
Get access

Abstract

Thermal scanning electron microscopy is a new temperature mapping technique based on thermal diffuse scattering in electron backscatter diffraction in a scanning electron microscope. It provides both nano-scale resolution and far-field non-contact temperature mapping capabilities no other methods can adequately combine. While a calculated spatial resolution of less than 100 nm has already been realized using 20 keV electrons, lower energy incident electrons should enable still higher spatial resolution (even down to 10 nm). In this paper, the feasibility of this approach is examined.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, H. J., Merlin, R., and Phillpot, S. R., J. Appl. Phys. 93, 793 (2003).10.1063/1.1524305CrossRefGoogle Scholar
Cahill, D. G., Goodson, K., and Majumdar, A., J. Heat Transfer 124, 223 (2002).10.1115/1.1454111CrossRefGoogle Scholar
Shi, L., Kwon, O., Miner, A. C., and Majumdar, A., J. Microelectromech. Syst. 10, 370378 (2001).CrossRefGoogle Scholar
Incropera, F. P. and DeWitt, D. P., Fundamentals of heat and mass transfer, 5th ed. (Wiley, 2002).Google Scholar
Wu, X. and Hull, R., Nanotechnology 23, 465707 (2012).10.1088/0957-4484/23/46/465707CrossRefGoogle Scholar
Wu, X. and Hull, R., Appl. Phys. Lett. 102, 113107 (2013).10.1063/1.4798285CrossRefGoogle Scholar
Zaefferer, S., Ultramicroscopy 107, 254266 (2007).10.1016/j.ultramic.2006.08.007CrossRefGoogle Scholar
Gao, H. X. and Peng, L. M., Acta Crystallogr. A, 55, 926932 (1999).10.1107/S0108767399005176CrossRefGoogle Scholar
Peng, L. M., Micron 30, 625648 (1999).10.1016/S0968-4328(99)00033-5CrossRefGoogle Scholar
Deal, A., Hooghan, T., and Eades, A., Ultramicroscopy 108, 116125, (2008).10.1016/j.ultramic.2007.03.010CrossRefGoogle Scholar
Hooghan, T. K., Staib, P., and Eades, A., Micros. and Microanal. 10, 938939 (2004).10.1017/S143192760488512XCrossRefGoogle Scholar