Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T14:21:02.370Z Has data issue: false hasContentIssue false

Newton-Multigrid for Biological Reaction-Diffusion Problems with Random Coefficients

Published online by Cambridge University Press:  28 May 2015

Eveline Rosseel*
Affiliation:
Computer Science Department, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Leuven, Belgium
Nico Scheerlinck*
Affiliation:
Computer Science Department, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Leuven, Belgium
Stefan Vandewalle*
Affiliation:
Computer Science Department, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Leuven, Belgium
*
Corresponding author.Email address:eveline.rosseel@cs.kuleuven.be
Corresponding author.Email address:nico.scheerlinck@cs.kuleuven.be
Corresponding author.Email address:stefan.vandewalle@cs.kuleuven.be
Get access

Abstract

An algebraic Newton-multigrid method is proposed in order to efficiently solve systems of nonlinear reaction-diffusion problems with stochastic coefficients. These problems model the conversion of starch into sugars in growing apples. The stochastic system is first converted into a large coupled system of deterministic equations by applying a stochastic Galerkin finite element discretization. This method leads to high-order accurate stochastic solutions. A stable and high-order time discretization is obtained by applying a fully implicit Runge-Kutta method. After Newton linearization, a point-based algebraic multigrid solution method is applied. In order to decrease the computational cost, alternative multigrid preconditioners are presented. Numerical results demonstrate the convergence properties, robustness and efficiency of the proposed multigrid methods.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Babuška, I., Nobile, F., and Tempone, R. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev., 52(2):317355, 2010.Google Scholar
[2] Babuška, I., Tempone, R., and Zouraris, G. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal, 42:800825, 2004.Google Scholar
[3] Butcher, J. C. and Wanner, G. Runge-Kutta methods: some historical notes. Appl. Numer. Math., 22:113151, 1996.Google Scholar
[4] Clees, T. AMG strategies for PDE systems with applications in industrial semiconductor simulation. PhD thesis, University of Cologne, Cologne, Germany, 2004.Google Scholar
[5] Demmel, J. W., Eisenstat, S. C, Gilbert, J. R., Li, X. S., and Liu, J. W. H. A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. A., 20(3):720755, 1999.Google Scholar
[6] Elman, H., Ernst, O. G., O’Leary, D. P. and Stewart, M. Efficient iterative algorithms for the stochastic finite element method with application to acoustic scattering. Comput. Methods Appl. Mech. Engrg., 194:10371055, 2005.Google Scholar
[7] Elman, H. C., Miller, C. W., Phipps, E. T., and Tuminaro, R. S. Assessment of collocation and Galerkin approaches to linear diffusion equations with random data. Journal for Uncertainty Quantification, 1:1934, 2011.Google Scholar
[8] Ernst, O. G., Powell, C. E., Silvester, D., and Ullmann, E. Efficient solvers for a linear stochastic galerkin mixed formulation of diffusion problems with random data. SIAM J. Sci. Comput, 31 (2): 14241447, 2009.Google Scholar
[9] Ernst, O. G. and Ullmann, E. Stochastic Galerkin matrices. SIAM J. Matrix Anal. Appl., 31(4):18481872, 2010.CrossRefGoogle Scholar
[10] Foo, J., Yosibash, Z., and Karniadakis, G. E. Stochastic simulation of riser-sections with uncertain measured pressure loads and/or uncertain material properties. Comput. Methods Appl. Mech. Engrg., 196:42504271, 2007.Google Scholar
[11] Ghanem, R. G. and Spanos, P. D. Stochastic finite elements, aspectral approach. Dover, Mineola, New York, 2nd edition, 2003.Google Scholar
[12] Hairer, E. and Wanner, G. Solving ordinary differential equations II: stiff and differential-algebraic problems. Springer, Berlin, Germany, 2002.Google Scholar
[13] Keese, A. Numerical solution of systems with stochastic uncertainties. PhD thesis, Technische Universität Braunschweig, Braunschweig, Germany, 2004.Google Scholar
[14] Knio, O. M. and Le Maître, O. P. Uncertainty propagation in CFD using polynomial chaos decomposition. Fluid Dynamics Research, 38:616640, 2006.Google Scholar
[15] Le Maître, O. P., Knio, O. M., Najm, H. N., and Ghanem, R. Uncertainty propagation using Wiener-Haar expansions. J. Comput. Phys., 197:2857, 2004.Google Scholar
[16] Loève, M. Probability theory. Springer, New York, USA, 1977.Google Scholar
[17] Mathelin, L., Hussaini, M. Y., and Zang, T. A. Stochastic approaches to uncertainty quantification in CFD simulations. Numerical Algorithms, 38:209236, 2005.CrossRefGoogle Scholar
[18] Matthies, H. G. Stochastic finite elements: computational approaches to stochastic partial differential equations. Z. Angew. Math. Mech., 88(11):849873, 2008.Google Scholar
[19] Matthies, H. G. and Keese, A. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Engrg., 194:12951331, 2005.Google Scholar
[20] McGough, J. S. and K. Riley, . Pattern formation in the Gray-Scott model. Nonlinear analysis: real world applications, 5(1):105121, 2004.Google Scholar
[21] Nobile, F. and Tempone, R. Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients. Int. J. Numer. Meth. Eng., 80:9791006, 2009.Google Scholar
[22] Powell, C. E. and Ullmann, E. Preconditioning stochastic Galerkin saddle point systems. SIAM J. Matrix. Anal. Appl., 31(5):28132840, 2010.Google Scholar
[23] Rosseel, E., Boonen, T., and Vandewalle, S. Algebraic multigrid for stationary and time-dependent partial differential equations with stochastic coefficients. Numer. Linear Algebra Appl., 15:141–163, 2008.Google Scholar
[24] Rosseel, E., De Gersem, H., and Vandewalle, S. Nonlinear stochastic Galerkin and collocation methods: application to a ferromagnetic cylinder rotating at high speed. Commun. Comput. Phys., 8(5):947–975, 2010.Google Scholar
[25] Rosseel, E. and Vandewalle, S. Iterative solvers for the stochastic finite element method. SIAM J. Sci. Comput., 32(1):372–397, 2010.CrossRefGoogle Scholar
[26] Scheerlinck, N., Escudero, C., Baker, R. E., and Maini, P. K. Modelling spatio-temporal starch degradation patterns in apples during fruit growth. Journal of Agricultural Science, 145(6):645–646, 2007.Google Scholar
[27] Stüben, K. A review of algebraic multigrid. J. Comput. Appl. Math., 128:281–309, 2001.Google Scholar
[28] Trottenberg, U., Oosterlee, C. W., and Schüller, A. Multigrid. Academic Press, San Diego, USA, 2001.Google Scholar
[29] Wan, X. and Karniadakis, G. E. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys., 209:617–642, 2005.Google Scholar
[30] Xiu, D. and Karniadakis, G. E. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput., 24(2):619–644, 2002.Google Scholar
[31] Xiu, D., Lucor, D., Su, S.-H., and Karniadakis, G. E. Stochastic modeling of flow structure interactions using generalized polynomial chaos. J. Fluids Eng., 124:51–59, 2002.Google Scholar