Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T06:48:36.476Z Has data issue: false hasContentIssue false

Microstructural Characterization of 316L-Type Stainless Steel Exposed to SiFX Species in Argon Atmosphere

Published online by Cambridge University Press:  01 February 2011

E. Gamón
Affiliation:
Cinvestav-Saltillo, Carr. Saltillo-Mty Km 13, Saltillo Coah.México, 25900
M. I. Pech-Canul
Affiliation:
Cinvestav-Saltillo, Carr. Saltillo-Mty Km 13, Saltillo Coah.México, 25900
J. López-Cuevas
Affiliation:
Cinvestav-Saltillo, Carr. Saltillo-Mty Km 13, Saltillo Coah.México, 25900
A. L. Leal-Cruz
Affiliation:
Universidad de Sonora, Departamento de Ingeniería Química y Metalurgia, Rosales y Colosio S/N, Hermosillo Sonora, México, 83200
M. A. Pech-Canul
Affiliation:
Cinvestav-Mérida. Km 6 Antigua Carr. A Progresso, Apdo. Postal 73, Cordemex, Mérida, Yuc. México 97310 E-mail: eqamon68@qmail.com
Get access

Abstract

Nowadays, Si3N4 coatings are used to increase the hardness of 316L-type stainless steel for a wide variety of applications. These coatings are normally prepared by chemical vapor deposition (CVD) or variant techniques such as the hybrid solid-gas precursor system chemical vapor deposition (HYSYCVD), where Na2SiF6 is used as a solid precursor. Within the reaction chamber the Si-F gas species interact with nitrogen precursors to form Si3N4; however, during silicon nitride formation there is always certain amount of residual Si-F gas species which may affect the integrity of the steel surface. Therefore, in this work the effect of the Si-F species on the surface of 316L type stainless steel under argon atmosphere has been investigated. Stainless steel samples were prepared under two surface conditions (abraded and mirror polished), and were exposed to Si-F species considering various parameters such as: argon gas flow rate equal to 10 cm3/min, different temperatures (300, 500, 700, 900°C), and three exposure times (30, 60, 90 minutes). After exposure, the substrates were characterized by X-ray diffraction (XRD) and by scanning electron microscopy (SEM). The results show that the FeF2 phase is formed at low temperatures while the formation of different oxides is directly related to the processing temperature. What is more, these oxides are also strongly influenced by processing time; however temperature is the parameter that most significantly influences the oxides formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Choy, K.L., “Chemical Vapor Deposition of Coatings”, Progress in Materials Science, 48, 57170 (2003).Google Scholar
2. Kingon, A.I., Lutz, L.J., Davis, R.F., “Thermodynamic Calculations for the Chemical Vapor Deposition of Silicon Nitride”, J. Am. Ceram. Soc., 66–8, 551558 (1983).Google Scholar
3. Lee, W.Y., Strife, J.R., Veltri, R.D., “Low-Pressure Chemical Vapor Deposition of α-Si3N4from SiF4 and NH3: Kinetic Characteristics”, J. Am. Soc. 75–8, 22002206 (1992).Google Scholar
4. Galasso, F.S., Veltri, R.D., Croft, W.J., “Chemical Vapor Deposited Si3N4 ”, J. Am. Ceram. Soc., 57–4, 453454 (1978).Google Scholar
5. Leal Cruz, A. L., Pech-Canul, M.I., de la Peña, J.L., “A Low-Temperature and Seedless Method for Producing Hydrogen-Free Si3N4 ”, Revista Mexicana de Física 54–3, 200207 (2008).Google Scholar
6. Leal Cruz, A. L., “Estudio Termodinámico, Cinético y Microestructural de la Descomposición del Na2SiF6-Formación de Nitruros de Silicio en Sistemas Na2SiF6-Precursor de Nitrógeno-Diluyente” Centro de Investigaciones y Estudios Avanzados del Instituto Politécnico Nacional, Ramos Arizpe Coahuila, (2007).Google Scholar
7. Leal-Cruz, A. L., Pech-Canul, M. I., Certucha-Barragán, M. T., “A different consideration for Na2SiF6 formation/dissociation and its relation with silicon fluoride vaporization in the steelmaking process”, Mineral Processing and Extractive Metall. Rev., 29, 318329 (2008).Google Scholar
8. Miki, M, Maeno, M, Maruhashi, M., Nakawa, K., Ohmi, Y.Fluoride Passivation of Metal Surface for Self-Cleaning Semiconductor equipment”, Semiconductor Manufacturing, IEEE Transactions, 3, (1990) pp. 111.Google Scholar
9. Buscail, H., El Messki, S., Riffard, F., Perrier, S., Cueff, R., Caudron, E., Issartel, C.Characterization of the Oxides Formed at 1000°C on the AISI 316L Stainless Steel-Role of Molybdenum”, Materials Chemistry and Physics, 111, 491496 (2008).Google Scholar
10. Crouse, P.L., “A Conversion Electron Mössbauer Spectroscopic Study of the Reactions Between Hydrogen Fluoride and Iron Oxide Surface Films in the Presence and Absence of Oxygen and Water Vapor”, J. Phys. Chem. Solids, 50–4, 369375 (1989).Google Scholar
11. Olson, L.C., Ambrosek, J.W., Sridharan, K., Anderson, M. H., Allen, T.R., “Materials Corrosion in Molten LiF-NaF-KF Salt”, Journal of Fluorine Chemistry, 130, 6773 (2009).Google Scholar