Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T23:18:45.074Z Has data issue: false hasContentIssue false

Direct Evidence for Interstitial Carbon in Heavily Carbon-Doped GaAs

Published online by Cambridge University Press:  26 February 2011

G. E. HÖFler
Affiliation:
Center for Compound Semiconductors Microelectronics
J. Klatt
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign
J. N. Baillargeon
Affiliation:
Center for Compound Semiconductors Microelectronics
R. S. Averback
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign
K. Y. Cheng
Affiliation:
Center for Compound Semiconductors Microelectronics
K C. Hsieh
Affiliation:
Center for Compound Semiconductors Microelectronics
Get access

Abstract

Carbon is a promising p-type dopant in GaAs/AlxGa1−xAs heterojunction bipolar transistors (HBT) because of its low atomic mobility and its potential for achieving very high carrier concentrations. It is generally believed that carbon incorporates substitutionally on the column V sublattice. However, an anomalous behavior at carrier concentrations > 5 × 1019 cm−3 is observed in the electrical properties of carbon doped layers. The strain sustained in these layers may be explained by the presence of interstitial carbon.

We used Rutherford Backscattering Spectrometry in channeling geometry utilizing the nuclear reaction 12C (d,p)13C to determine the lattice locations of carbon in GaAs. The data presented unambiguously show, that up to 25% of the carbon atoms occupy interstitial sites. The presence of interstitial carbon is of importance for applications, since interstitial carbon may exhibit an enhanced diffusivity altering nominally abrupt dopant profiles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Theis, W. M., Bajaj, K. K., Litton, C. W. and Spitzer, W. G., Appl. Phys. Lett. 41, 70 (1982).Google Scholar
2. Cunningham, B. T., Haase, M. A., McCullum, M. J., Baker, J. E. and Stillman, G. E., Appl. Phys. Lett. 54, 1905 (1989).Google Scholar
3. Weyers, M., Pütz, N., Heinecke, H., Heyen, M., Lüth, H., and Balk, P., J. Cryst. Growth 17, 57 (1986)Google Scholar
4. Kuech, T. F., Tischler, M. A., Wang, P. J., Scilla, G., Potemski, R. and Cardone, F., Appl. Phys. Lett. 53, 1317 (1988).Google Scholar
5. Pütz, N., Heinecke, H., Werner, K., Weyer, M., Lüth, H., J. Cryst. Growth 74, 270 (1987).Google Scholar
6. Abernathy, C. R., Pearton, S. J., Caruso, R., Ren, F., and Kovalchik, J., Appl. Phys. Lett. 55, 1750 (1989).Google Scholar
7. de Lyon, T. J., Woodall, J. M., Goorsky, M. S., and Kirchner, P. D., Appl. Phys. Lett. 56, 1040 (1990).CrossRefGoogle Scholar
8. Enquist, P. M., Appl. Phys. Lett. 22, 2349 (1990).Google Scholar
9. Abernathy, C. R., Pearton, S. J., Manasreh, M. O, Fischer, D. W., and Talwar, D. N., Appl. Phys. Lett. 57, 294 (1990)Google Scholar
10. Hoke, W. E., Lemonias, P. S., Weir, D. G., Hendricks, H. T., and Jackson, G. S., J. App. Phys. 69, 511 (1991)Google Scholar
11. Chu, W. K., Mayer, J. W. and Nicolet, M. A., Backscattering Spectrometry, Academic Press, New York (1978).Google Scholar
12. Wiggers, L. W. and Saris, F. W., Rad. Eff. 41, 141 (1979).Google Scholar