Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T02:17:02.159Z Has data issue: false hasContentIssue false

Quantum chemical study of adsorption and dissociation of HfCl4 and H2O on Ge/Si(100) − (2×1): Initial stage of atomic layer deposition of HfO2 on SiGe surface

Published online by Cambridge University Press:  01 March 2005

Wei Chen
Affiliation:
State Key Laboratory of ASIC & System, Department of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
David Wei Zhang*
Affiliation:
State Key Laboratory of ASIC & System, Department of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
Jie Ren
Affiliation:
State Key Laboratory of ASIC & System, Department of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
Hong-Liang Lu
Affiliation:
State Key Laboratory of ASIC & System, Department of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
Jian-Yun Zhang
Affiliation:
State Key Laboratory of ASIC & System, Department of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
Min Xu
Affiliation:
State Key Laboratory of ASIC & System, Department of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
Ji-Tao Wang
Affiliation:
State Key Laboratory of ASIC & System, Department of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
Li-Kong Wang
Affiliation:
State Key Laboratory of ASIC & System, Department of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
*
a)Address all correspondence to this author. e-mail: dwzhang@fudan.ac.cn
Get access

Abstract

We investigated adsorption and dissociation of water and HfCl4 on a Ge/Si(100) −(2 × 1) surface with a density-functional theory. The Si–Ge and Ge–Ge homodimers are used to represent the Si1−xGex surface. (i) Water first adsorbs on the bare Ge/Si(100) − (2 × 1) surface and then dissociates into OH and H. The activation energy for adsorption of water on the Ge–Ge homodimer is much higher than that on the Si–Ge heterodimer. (ii) HfCl4 dissociates upon adsorption on the Ge/Si(100) − (2 × 1) surface into HfCl3 and Cl. No net activation barrier exists during the adsorption of HfCl4 on both SiGe surface dimers. The molecular adsorption state is found to be metastable according to the calculation, which implies that the reaction tends to move toward to the product rather than trapping in HfCl4 adsorbed state. The difference in the potential energy surface between reactions on Si–Ge and Ge–Ge dimers is due to different bond strengths.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wilk, G.D., Wallace, R.M. and Anthony, J.M.: High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
2.Gusev, E.P., Cabral, C. Jr., Copel, M., D'Emic, C. and Gribelyuk, M.: Ultrathin HfO2 films grown on silicon by atomic layer deposition for advanced gate dielectrics applications. Microelectron. Eng. 69, 145 (2003).CrossRefGoogle Scholar
3.Gutowski, M., Jaffe, J.E., Liu, C.L., Stoker, M., Hedge, R.I., Rai, R.S. and Tobin, P.J.: Thermodynamic stability of high-k dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2. Appl. Phys. Lett. 80, 1897 (2002).CrossRefGoogle Scholar
4.Cho, M-H., Roh, Y.S., Whang, C.N., Jeong, K., Nahm, S.W., Ko, D-H., Lee, J.H., Lee, N.I. and Fujihara, K.: Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition. Appl. Phys. Lett. 81, 472 (2002).CrossRefGoogle Scholar
5.Lee, B.H., Kang, L., Nieh, R., Qi, W-J. and Lee, J.C.: Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing. Appl. Phys. Lett. 76, 1926 (2000).CrossRefGoogle Scholar
6.Ritala, M., Leskela, M., Niinisto, L., Prohaska, T., Friedbacher, G. and Grassbauer, M.: Surface roughness reduction in atomic layer epitaxy growth of titanium dioxide thin films. Thin Solid Films 249, 155 (1994).CrossRefGoogle Scholar
7.Leskela, M. and Ritala, M.: Atomic layer deposition (ALD): From precursors to thin film structures. Thin Solid Films 409, 138 (2002).Google Scholar
8.Kukli, K., Ritala, M., Sundqvist, J., Aarik, J., Lu, J., Sajavaara, T. and Harsta, A.: Properties of hafnium oxide films grown by atomic layer deposition from hafnium tetraiodide and oxygen. J. Appl. Phys. 92, 5698 (2002).CrossRefGoogle Scholar
9.Sundqvist, J., Harsta, A., Aarik, J., Kukli, K. and Aidla, A.: Atomic layer deposition of polycrystalline HfO2 films by the HfI4–O2 precursor combination. Thin Solid Films 427, 147 (2003).Google Scholar
10.Dey, S.K., Wang, C-G., Tang, D., Kim, M.J., Carpenter, R.W., Werkhoven, C. and Shero, E.: Atomic layer chemical vapor deposition of ZrO2-based dielectric films: Nanostructure and nanochemistry. J. Appl. Phys. 93, 4144 (2003).CrossRefGoogle Scholar
11.Cho, M., Park, H.B., Park, J., Lee, S.W., Hwang, C.S., Jang, G.H. and Jeong, J.: High-k properties of atomic-layer-deposited HfO2 films using a nitrogen-containing Hf[N(CH3)2]4 precursor and H2O oxidant. Appl. Phys. Lett. 83, 5503 (2003).CrossRefGoogle Scholar
12.Cho, M-H., Chang, H.S., Moon, D.W., Kang, S.K., Min, B.K., Ko, D-H., Kim, H.S., McIntyre, P.C., Lee, J.H., Ku, J.H. and Lee, N.I.: Interfacial characteristics of HfO2 films grown on strained Si0.7Ge0.3 by atomic-layer deposition. Appl. Phys. Lett. 84, 1171 (2004).CrossRefGoogle Scholar
13.Widjaja, Y. and Musgrave, C.B.: Atomic layer deposition of hafnium oxide: A detailed reaction mechanism from first principles. J. Chem. Phys. 117, 1931 (2002).CrossRefGoogle Scholar
14.Esteve, A., Rouhani, M. Djafari, Jeloaica, L. and Esteve, D.: DFT investigation of HfCl4 decomposition on hydroxylated SiO2: First stage of HfO2 atomic layer deposition. Comp. Mater. Sci. 27, 75 (2003).Google Scholar
15.Ismail, K., Chu, J.O. and Meyerson, B.S.: High hole mobility in SiGe alloys for device applications. Appl. Phys. Lett. 64, 3124 (1994).CrossRefGoogle Scholar
16.Jenkins, S.J. and Srivastava, G.P.: Energetic evidence for mixed dimer growth on the Si(001)/Ge(2 × 1) surface. Surf. Sci. 377–379, 887 (1997).CrossRefGoogle Scholar
17.Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C. and Pople, J.A.: GAUSSIAN 03, Revision B.05 (Gaussian, Inc., Pittsburgh, PA, 2003).Google Scholar
18.Becke, A.D.: A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98, 1372 (1993).CrossRefGoogle Scholar
19.Hay, P.J. and Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270 (1985).CrossRefGoogle Scholar
20.Wadt, W.R. and Hays, P.J.: Ab initio effective core potentials for molecular calculations. Potentials for main-group elements Na to Bi. J. Chem. Phys. 82, 284 (1985).CrossRefGoogle Scholar
21.Hay, P.J. and Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299 (1985).Google Scholar
22.Jenkins, S.J. and Srivastava, G.P.: Theoretical evidence concerning mixed dimer growth on the Si(100)(2×1)-Ge surface. J. Phys. Condens. Matter 8, 6641 (1996).Google Scholar
23.Mui, C., Bent, S.F. and Musgrave, C.B.: A theoretical study of the structure and thermochemistry of 1,3-butadiene on the Ge–Si(100) − 2 × 1 surface. J. Phys. Chem. A. 104, 2457 (2000).CrossRefGoogle Scholar
24.Konecny, R. and Doren, D.J.: Adsorption of water on Si(100) − (2 × 1): A study with density-functional theory. J. Chem. Phys. 106, 2426 (1997).Google Scholar
25.Cho, J-H., Kim, K.S., Lee, S-H. and Kang, M-H.: Dissociative adsorption of water on the Si(001) surface: A first-principles study. Phys. Rev. B 61, 4503 (2000).Google Scholar
26.Foraker, A. and Doren, D.J.: Dissociative adsorption of water on Ge(100) − (2×1): First-principles theory. J. Phys. Chem. B 107, 8507 (2003).CrossRefGoogle Scholar
27.Cho, J-H., Kleinman, L., Jin, K-J. and Kim, K.S.: Theoretical study of water adsorption on the Ge(100) surface. Phys. Rev. B. 66, 113306 (2002).CrossRefGoogle Scholar
28.Widjaja, Y., Han, J.H. and Musgrave, C.B.: Quantum chemical study of zirconium oxide deposition on the Si(100) − (2×1) surface. J. Phys. Chem. B. 107, 9319 (2003).CrossRefGoogle Scholar