Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-17T05:28:29.682Z Has data issue: false hasContentIssue false

Predictive modeling and design rules for solid electrolytes

Published online by Cambridge University Press:  10 October 2018

Gerbrand Ceder
Affiliation:
University of California, Berkeley, USA; gceder@berkeley.edu
Shyue Ping Ong
Affiliation:
University of California, San Diego, USA; ongsp@eng.ucsd.edu
Yan Wang
Affiliation:
Advanced Materials Lab, Samsung Research America, USA; eric.wangyan@samsung.com
Get access

Abstract

All-solid-state batteries utilizing a ceramic instead of an organic liquid as an electrolyte have the potential to be safer and more energy dense than traditional rechargeable lithium-ion batteries. This emergent energy-storage technology, however, is still critically limited by the performance of the solid electrolyte and its interface with electrodes. Here, we present a review of recent efforts in predictive modeling and materials design for lithium and sodium solid electrolytes using advanced computational approaches. These approaches have enabled the efficient design and discovery of new functional materials with desired properties, such as high alkali ionic conductivity, good phase and electrochemical stability, and low cost, accelerating the development of all-solid-state alkali batteries.

Type
Frontiers of Solid-State Batteries
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Miara, L.J., Ong, S.P., Mo, Y., Richards, W.D., Park, Y., Lee, J.-M., Lee, H.S., Ceder, G., Chem. Mater. 25, 3048 (2013).CrossRefGoogle Scholar
Adams, S., Solid State Ionics 177, 1625 (2006).CrossRefGoogle Scholar
Deng, Z., Mo, Y., Ong, S.P., NPG Asia Mater . 8, e254 (2016).CrossRefGoogle Scholar
Wang, Y., Richards, W.D., Ong, S.P., Miara, L.J., Kim, J.C., Mo, Y., Ceder, G., Nat. Mater. 14, 1026 (2015).CrossRefGoogle Scholar
Miara, L.J., Richards, W.D., Wang, Y.E., Ceder, G., Chem. Mater. 27, 4040 (2015).CrossRefGoogle Scholar
Zhu, Z., Chu, I.-H., Deng, Z., Ong, S.P., Chem. Mater. 27, 8318 (2015).CrossRefGoogle Scholar
Chu, I.-H., Kompella, C.S., Nguyen, H., Zhu, Z., Hy, S., Deng, Z., Meng, Y.S., Ong, S.P., Sci. Rep. 6, 33733 (2016).CrossRefGoogle Scholar
Zhu, Z., Chu, I.-H., Ong, S.P., Chem. Mater. 29, 2474 (2017).CrossRefGoogle Scholar
Fang, H., Jena, P., Proc. Natl. Acad. Sci. U.S.A. 114, 11046 (2017).CrossRefGoogle Scholar
Chen, H.M., Maohua, C., Adams, S., Phys. Chem. Chem. Phys. 17, 16494 (2015).CrossRefGoogle Scholar
Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., Mitsui, A., Nat. Mater. 10, 682 (2011).CrossRefGoogle Scholar
Ong, S.P., Mo, Y., Richards, W.D., Miara, L., Lee, H.S., Ceder, G., Energy Environ. Sci. 6, 148 (2013).CrossRefGoogle Scholar
Bron, P., Johansson, S., Zick, K., Schmedt auf der Günne, J., Dehnen, S., Roling, B., J. Am. Chem. Soc. 135, 15694 (2013).CrossRefGoogle Scholar
Whiteley, J.M., Woo, J.H., Hu, E., Nam, K.-W., Lee, S.-H., J. Electrochem. Soc. 161, A1812 (2014).CrossRefGoogle Scholar
Kato, Y., Hori, S., Saito, T., Suzuki, K., Hirayama, M., Mitsui, A., Yonemura, M., Iba, H., Kanno, R., Nat. Energy 1, 16030 (2016).CrossRefGoogle Scholar
Richards, W.D., Tsujimura, T., Miara, L.J., Wang, Y., Kim, J.C., Ong, S.P., Uechi, I., Suzuki, N., Ceder, G., Nat. Commun. 7, 11009 (2016).CrossRefGoogle Scholar
Zhang, Z., Ramos, E., Lalère, F., Assoud, A., Kaup, K., Hartman, P., Nazar, L.F., Energy Environ. Sci. 11, 87 (2018).CrossRefGoogle Scholar
Inorganic Crystal Structure Database, http://icsd.fiz-karlsruhe.de/icsd.Google Scholar
Hull, S., Rep. Prog. Phys. 67 1233 (2004).CrossRefGoogle Scholar
Richards, W.D., Wang, Y., Miara, L.J., Kim, J.C., Ceder, G., Energy Environ. Sci. 9, 3272 (2016).CrossRefGoogle Scholar
Suzuki, N., Richards, W.D., Wang, Y., Miara, L.J., Kim, J.C., Jung, I.-S., Tsujimura, T., Chem. Mater. 30, 2236 (2018).CrossRefGoogle Scholar
Kaup, K., Lalère, F., Huq, A., Shyamsunder, A., Adermann, T., Hartmann, P., Nazar, L.F., Chem. Mater. 30, 592 (2018).CrossRefGoogle Scholar
Chu, I.-H., Nguyen, H., Hy, S., Lin, Y., Wang, Z., Xu, Z., Deng, Z., Meng, Y.S., Ong, S.P., ACS Appl. Mater. Interfaces 8, 7843 (2016).CrossRefGoogle Scholar
Wang, Y., Richards, W.D., Bo, S., Miara, L.J., Ceder, G., Chem. Mater. 29, 7475 (2017).CrossRefGoogle Scholar
Mo, Y., Ong, S.P., Ceder, G., Chem. Mater. 24, 15 (2012).CrossRefGoogle Scholar
Zhu, Y., He, X., Mo, Y., ACS Appl. Mater. Interfaces 7, 23685 (2015).CrossRefGoogle Scholar
Richards, W.D., Miara, L.J., Wang, Y., Kim, J.C., Ceder, G., Chem. Mater. 28, 266 (2016).CrossRefGoogle Scholar
Sharafi, A., Kazyak, E., Davis, A.L., Yu, S., Thompson, T., Siegel, D.J., Dasgupta, N.P., Sakamoto, J., Chem. Mater. 29, 7961 (2017).CrossRefGoogle Scholar
Deng, Z., Wang, Z., Chu, I.-H., Luo, J., Ong, S.P., J. Electrochem. Soc. 163, A67 (2016).CrossRefGoogle Scholar
Tang, H., Deng, Z., Lin, Z., Wang, Z., Chu, I.H., Chen, C., Zhu, Z., Zheng, C., Ong, S.P., Chem. Mater. 30, 163 (2018).CrossRefGoogle Scholar
Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K.A., APL Mater . 1, 011002 (2013).CrossRefGoogle Scholar
Tian, Y., Shi, T., Richards, W.D., Li, J., Kim, J.C., Bo, S., Ceder, G., Energy Environ. Sci. 10, 1150 (2017).CrossRefGoogle Scholar
Miara, L., Windmüller, A., Tsai, C.L., Richards, W.D., Ma, Q., Uhlenbruck, S., Guillon, O., Ceder, G., ACS Appl. Mater. Interfaces 8, 26842 (2016).CrossRefGoogle Scholar
Wenzel, S., Leichtweiss, T., Weber, D.A., Sann, J., Zeier, W.G., Janek, J., ACS Appl. Mater. Interfaces 8, 28216 (2016).CrossRefGoogle Scholar
Wenzel, S., Weber, D.A., Leichtweiss, T., Busche, M.R., Sann, J., Janek, J., Solid State Ionics 286, 24 (2016).CrossRefGoogle Scholar
Seo, D.H., Lee, J., Urban, A., Malik, R., Kang, S., Ceder, G., Nat. Chem. 8, 692 (2016).CrossRefGoogle Scholar
Al-Qawasmeh, A., Holzwarth, N.A.W., J. Power Sources 364, 410 (2017).CrossRefGoogle Scholar
Lepley, N.D., Holzwarth, N.A.W., Phys. Rev. B 92, 214201 (2015).CrossRefGoogle Scholar