Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T09:12:12.845Z Has data issue: false hasContentIssue false

Study on Dipole Layer Formation between Two Oxides : Experimental Evidences and Possible Models

Published online by Cambridge University Press:  21 November 2011

Koji Kita
Affiliation:
Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Akira Toriumi
Affiliation:
Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Get access

Abstract

Hetero-interface between two oxides sometimes forms a dipole layer which is experimentally observable macroscopically, as an electric potential barrier at the interface. Investigation of the flatband voltage shift of the metal-insulator-semiconductor capacitors with bilayer oxides as the insulator is suitable to characterize the dipole formation at the interface of two oxides. A model to explain the driving force to form the dipole is discussed by taking account of the areal density difference of oxygen atoms at the interface, which should be a guideline to predict both the direction and magnitude of the interface dipoles. Based on this model the requirement for the oxides to form the dipoles is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hobbs, C. C., Fonseca, L., Knizhnik, A., Dhandapani, V., Samavedam, S.B., Taylor, W.J., Grant, J.M., Dip, L. G.. Triyoso, D. H., Hedge, R. I., Gilmer, D. C., Garcia, R., Roan, D., Lovejoy, M. L., Rai, R. S., Hebert, E. A., Tseng, H. H., Anderson, S. G. H., White, B. E., and Tobin, P. J., IEEE Trans. Electron Dev. 51, 971 (2004).Google Scholar
2. Yamamoto, Y., Kita, K., Kyuno, K. and Toriumi, A., Jpn. J. Appl. Phys. Pt.1, 46, 7251 (2007).Google Scholar
3. Iwamoto, K., Kamimuta, Y., Ogawa, A., Watanabe, Y., Migita, S., Mizubayashi, W., Morita, Y., Takahashi, M., Ota, H., Nabatame, T., and Toriumi, A., Appl. Phys. Lett. 92, 132907 (2008).Google Scholar
4. Kamimuta, Y., Iwamoto, K., Nunoshige, Y., Hirano, A., Mizubayashi, W., Watanabe, Y., Migita, S., Ogawa, A., Ota, H., Nabatame, T., and Toriumi, A., Tech. Dig. Int. Electron Dev. Meet. 2007, pp.341344.Google Scholar
5. Kirsch, P. D., Sivasubramani, P., Huang, J., Young, C. D., Quevedo-Lopez, M. A., Wen, H. C., Alshareef, H., Choi, K., Park, C. S., Freeman, K., Hussain, M. M., Bersuker, G., Harris, H. R., Majhi, P., Choi, R., Lysaght, P., Lee, B. H., Tseng, H. H., Jammy, R., Boscke, T. S., Lichtenwalner, D. J., Jur, J. S., and Kingon, A. I., Appl. Phys. Lett. 92, 092901 (2008).Google Scholar
6. Kubicek, S., Schram, T., Paraschiv, V., Vos, R., Demand, M., Adelmann, C., Witters, T., Nyns, L., Ragnarsson, L. A., Yu, H., Veloso, A., Singanamalla, R., Kauerauf, T., Rohr, E., Brus, S., Vrancken, C., Chang, V. S., Mitsuhashi, R., Akheyar, A., Cho, H. J., Hooker, J. C., O’sullivan, B. J., Chiarella, T., Kerner, C., Delabie, A., Van Elshocht, S., DeMeyer, K., De Gent, S., Absil, P., Hoffmann, T. and Biesemans, S., Tech. Dig. Int. Electron Dev. Meet. 2007, p.49.Google Scholar
7. Kirsch, P. D., Quevedo-Lopez, M. A., Krishnan, S.A., Krug, C., Alshareef, H., Park, C. S., Harris, R., Moumen, N., Neugroschel, A., Bersuker, G., Lee, B. H., Wang, J. G., Pant, G., Gnade, B. E., Kim, M. J., Wallace, R. M., Jur, J. S., Lidhtenwalner, D. J., Kingon, A. I., and Jammy, R., Tech. Dig. Int. Electron Dev. Meet. 2006, pp.629632.Google Scholar
8. Mise, N., Morooka, T., Emori, T., Kamiyama, S., Murayama, K., Sato, M., Ono, T., Nara, Y., and Ohji, Y., Tech. Dig. Int. Electon Dev. Meet. 2007, pp.527530.Google Scholar
9. Fulton, C. C., Lucovsky, G., and Nemanich, R. J., J. Appl. Phys. 99, 063708 (2006).Google Scholar
10. Toyoda, S., Kamada, H., Tanimura, T., Kumigashira, H., and Oshima, M., Ohtsuka, T., Hata, Y., and Niwa, M., Appl. Phys. Lett. 96, 0429 (2010).Google Scholar
11. Kakushima, K., Okamoto, K., Tachi, K., Song, J., Sato, S., Kawanago, T., Tsutsui, K., Sugii, N., Ahmet, P., Hattori, T., and Iwai, H., J. Appl. Phys. 104, 104908 (2008).Google Scholar
12. Zhu, L. Q., Kita, K., Nishimura, T., Nagashio, K., Wang, S. K., and Toriumi, A., Appl. Phys. Express 3, 061501 (2010).Google Scholar
13. Widiez, J., Nishiumura, T., Kita, K., and Toriumi, A., Jpn. J. Appl. Phys. 47, 2410 (2008).Google Scholar
14. Sharia, O., Demkov, A. A., Bersuker, G., and Lee, B. H., Phys. Rev. B 75, 035306 (2007).Google Scholar
15. Lin, L. and Robertson, J., Microelectronic Eng. 86, 1743 (2009).Google Scholar
16. Jagannathan, H., Narayanan, V., and Brown, S., ECS Trans. 16 (5) 19 (2008).Google Scholar
17. Sanderson, R. T., Science 114, 670 (1951).Google Scholar
18. Wang, X., Han, K., Wang, W., Chen, S., Ma, X., Chen, D., Zhang, J., Du, J., Xiong, Y., and Huang, A., Appl. Phys. Lett. 96, 152907 (2010).Google Scholar
19. Heine, V., Phys. Rev. 138, A1689 (1965).Google Scholar
20. Kita, K. and Toriumi, A., Appl. Phys. Lett. 94, 132902 (2009).Google Scholar
21. Hikita, Y., Nishikawa, M., Yajima, T. and Hwang, H.Y., Phys. Rev. B, 79, 073101 (2009).Google Scholar
22. Burton, J. D. and Tsymbal, E. Y., Phys. Rev. B, 82, 161407 (2010).Google Scholar