Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T23:34:53.449Z Has data issue: false hasContentIssue false

Origin, quantities and fate of nitrogen flows associated with animal production

Published online by Cambridge University Press:  25 September 2014

L. Delaby*
Affiliation:
INRA, Research Unit 1348, PEGASE F-35590 Saint-Gilles, France
J.-Y. Dourmad
Affiliation:
INRA, Research Unit 1348, PEGASE F-35590 Saint-Gilles, France
F. Béline
Affiliation:
IRTEA Research Init GERE, F-35044 Rennes, France
P. Lescoat
Affiliation:
INRA, Research Unit 0083, URA F-37380 Nouzilly, France
P. Faverdin
Affiliation:
INRA, Research Unit 1348, PEGASE F-35590 Saint-Gilles, France
J.-L. Fiorelli
Affiliation:
INRA, Research Unit 0055, ASTER F-88500, France
F. Vertès
Affiliation:
INRA, Research Unit 1069, SAS F-35042 Rennes Cedex, France
P. Veysset
Affiliation:
INRA, Research Unit 1213, URH F-63122 St Genest-Champanelle, France
T. Morvan
Affiliation:
INRA, Research Unit 1069, SAS F-35042 Rennes Cedex, France
V. Parnaudeau
Affiliation:
INRA, Research Unit 1069, SAS F-35042 Rennes Cedex, France
P. Durand
Affiliation:
INRA, Research Unit 1069, SAS F-35042 Rennes Cedex, France
P. Rochette
Affiliation:
Agriculture and Agro-Food Industry, Quebec city, G1V 2J3, Canada
J.-L. Peyraud
Affiliation:
INRA, Research Unit 1348, PEGASE F-35590 Saint-Gilles, France
Get access

Abstract

The nitrogen efficiency is the ratio between the output of nitrogen in the animal products and the input required for the livestock production. This ratio is a driver of the economic profitability and can be calculated at various levels of the production system: animal, field or farm. Calculated at the scale of the animal, it is generally low with less than half-ingested nitrogen remaining in the milk, the eggs or the meat in the form of proteins; the major part of the nitrogen being rejected in the environment. Significant gains were achieved in the past via the genetic improvement and the adjustment of feed supply. At the farm level, the efficiency increases to 45% to 50%, thanks to the recycling of animal excreta as fertilisers. From excretion to land application of manure, the losses of nitrogen are very variable depending on the animal species and the manure management system. Considering the risks of pollution swapping, all management and handling steps need to be considered. Collective initiatives or local rules on agricultural practices allow new opportunities to restore nitrogen balances on local territory.

Type
Full Paper
Copyright
© The Animal Consortium 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarnink, AJA and Elzing, A 1998. Dynamic model for ammonia volatilization in housing with partially slatted floors, for fattening pigs. Livestock Production Science 53, 153169.Google Scholar
Béline, F, Daumer, ML and Guiziou, F 2004. Biological aerobic treatment of pig slurry in France: nutrients removal efficiency and separation performances. Transactions of the ASAE 47, 857864.Google Scholar
Benoît, M, Deffontaines, JP, Gras, F, Bienaime, E and Riela-Cosserat, R 1997. Agriculture et qualité de l'eau: une approche interdisciplinaire de la pollution par les nitrates d'un bassin d'alimentation. Cahiers Agricultures 6, 97105.Google Scholar
Bernal, MP, Alburquerque, JA and Moral, R 2009. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology 100, 54445453.CrossRefGoogle ScholarPubMed
Bernet, N and Béline, F 2009. Challenges and innovations on biological treatment of livestock effluents. Proceedings of the OECD Workshop: Livestock Waste Treatment Systems of the Future: A Challenge to Environmental Quality, Food Safety, and Sustainability, Florence, South Carolina, USA, 2–4 April, 5431–5436.Google Scholar
Berntsen, J, Olesen, JE, Petersen, BM and Hansen, EM 2006. Long-term fate of nitrogen uptake in catch crops. European Journal of Agronomy 25, 383390.Google Scholar
Billen, G, Thieu, V, Garnier, J and Silvestre, M 2009. Modelling the N cascade in regional watersheds: the case study of the Seine, Somme and Scheldt rivers. Agriculture, Ecosystems & Environment 133, 234246.Google Scholar
Bonneau, M 2008. Special volume, INRA Productions Animales, 4, 85p.Google Scholar
Bonneau, M, Dourmad, JY, Lebret, B, Meunier-Salaun, MC, Espagnol, S, Salaun, Y, Leterme, P and van der Werf, H 2008a. Évaluation globale des systèmes de production porcine et leur optimisation au niveau de l’exploitation. Productions Animales 21, 367386.Google Scholar
Bonneau, M, Dourmad, JY, Germon, JC, Hassouna, M, Lebret, B, Loyon, L, Paillat, JM, Ramonet, Y and Robin, P 2008b. Connaissance des émissions gazeuses dans les différentes filières de gestion des effluents porcins. Productions Animales 21, 345359.Google Scholar
Bouwman, AF, Boumans, LJM and Batjes, NH 2002. Emissions of N(2)O and NO from fertilized fields: summary of available measurement data. Global Biogeochemical Cycles 16, p; 6-1/6-13.Google Scholar
Castillo, AR, Kebreab, E, Beever, DE and France, J 2000. A review of efficiency of nitrogen utilisation in lactating dairy cows and its relationship with environmental pollution. Journal of Animal and Feed Science 9, 132.Google Scholar
Chatellier, V and Vérité, R 2003. L'élevage bovin et l'environnement en France: le diagnostic justifie-t-il des alternatives techniques? Productions Animales 16, 231249.Google Scholar
Citepa 2011. Inventaire des émissions de polluants atmosphériques et de gaz à effet de serre en France, Séries sectorielles et analyses étendues (format Secten), Citepa, Paris, 328p.Google Scholar
Constantin, J, Mary, B, Laurent, F, Aubrion, G, Fontaine, A, Kerveillant, P and Beaudoin, N 2010. Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agriculture, Ecosystems & Environment 135, 268278.Google Scholar
Corpen 2006. Estimation des rejets d’azote, phosphore, potassium, calcium, cuivre et zinc par les élevages avicoles. Influence de la conduite alimentaire et du mode de logement des animaux sur la nature et la gestion des déjections. Corpen, Paris. 55pp.Google Scholar
Da Silva, PV, van der Werf, H and Soares, SR 2010. LCA of French and Brazilian broiler poultry production scenarios. 7. International Conference on LCA in Agri-Food Sector. Towards a Sustainable Management of the Food Chain, Bari, Italy, 22–24 September.Google Scholar
Dalgaard, T, Halberg, N and Kristensen, IS 1998. Can organic farming help to reduce N-losses? Experiences from Denmark. International Workshop on Dissipation of N from the Human N-Cycle, and its Role in Present and Future N/Sub 2/0 Emissions to the Atmosphere, 52, 277–287.Google Scholar
Dalgaard, T, Heidmann, T and Mogensen, L 2002. Potential N-losses in three scenarios for conversion to organic farming in a local area of Denmark. European Journal of Agronomy 16, 207217.Google Scholar
de Boer, IJM 2003. Environmental impact assessment of conventional and organic milk production. Livestock Production Science 80, 6977.CrossRefGoogle Scholar
Delaby, L and Journet, M 2009. Quantifier l’énergie et l’azote fixés par les fourrages à partir des productions animales en vue d’évaluer la durabilité des élevages laitiers. Rencontres Recherches Ruminants 16, 123.Google Scholar
Delaby, L, Peyraud, JL and Vérité, R 1995. Effect of milk yield level and feeding systems on N excretion in dairy cows. Rencontres Recherches Ruminants, 349353.Google Scholar
Delaby, L, Dourmad, J-Y, Béline, F, Lescoat, P, Faverdin, P, Fiorelli, J-L, Vertès, F, Veysset, P, Morvan, T, Parnaudeau, V, Durand, P, Rochette, P and Peyraud, J-L 2014. Origin, quantities and fate of nitrogen flows associated with animal production. Advances in Animal Biosciences 5 (s1), 2847.Google Scholar
Deuffic, P and Candau, J 2006. Farming and landscape management: how French farmers are coping with the ecologization of their activities. Journal of Agricultural & Environmental Ethics 19, 563585.Google Scholar
Donnars, C, le Perchec, S, Girard, A, Guillaume, F and Réchauchère, O 2014. The scientific assessment on nitrogen flows in livestock farming: motives and methods. Advances in Animal Biosciences 5 (s1), 17.CrossRefGoogle Scholar
Dourmad, JY, Le Mouel, Cet al. 1995. Réduction des rejets azotés des porcs par la voie alimentaire: évaluation économique et influence des changements de la Politique Agricole Commune. Productions Animales 8, 135144.Google Scholar
Dourmad, JY, Seve, B, Latimier, P, Boisen, S, Fernandez, J, van der Peet-Schwering, C and Jongbloed, AW 1999. Nitrogen consumption, utilisation and losses in pig production in France, The Netherlands and Denmark. Livestock Production Science 58, 261264.Google Scholar
Dourmad, JY, Etienne, M, Valancogne, A, Dubois, S, van Milgen, J and Noblet, J 2008. InraPorc: a model and decision support tool for the nutrition of sows. Animal Feed Science and Technology 143, 372386.CrossRefGoogle Scholar
Dourmad, JY, Rigolot, C and Jondreville, C 2009. Influence de la nutrition sur l'excrétion d'azote, de phosphore, de cuivre et de zinc des porcs, et sur les émissions d'ammoniac, de gaz à effet de serre et d'odeurs. Productions Animales 22, 4148.Google Scholar
Dourmad, JY, Rigolot, C and Bonneau, M 2010. Évolution des modes de conduite des élevages porcins et conséquences sur la charge en effluents. Les colloques de l'Académie d'Agriculture de France 1, 7588.Google Scholar
Dragosits, U, Theobald, MR, Place, CJ, ApSimon, HM and Sutton, MA 2006. The potential for spatial planning at the landscape level to mitigate the effects of atmospheric ammonia deposition. Environmental Science & Policy 9, 626638.Google Scholar
EEA-EMEP/CORINAIR 2007. Emission inventory guidebook – 2007. http://www.eea.europa.eu/publications/EMEPCORINAIR5Google Scholar
Estermann, BL, Sutter, F, Schlegel, PO, Erdin, D, Wettstein, HR and Kreuzer, M 2002. Effect of calf age and dam breed on intake, energy expenditure, and excretion of nitrogen, phosphorus, and methane of beef cows with calves. Journal of Animal Science 80, 11241134.Google Scholar
Faverdin, P, Chardon, X, Rigolot, C, Baratte, C, Raison, C, Piquemal, P, Martin-Clouaire, R, Rellier, JP, Le Gall, A, Dourmad, JY, Leterme, P, Paillat, JM, Delaby, L, Garcia, F, Peyraud, JL, Poupa, J-C, Morvan, T and Espagnol, S 2011. Mélodie, un simulateur d'une exploitation d'élevage pour étudier les relations entre conduites des systèmes et risques pour l'environnement. Innovations Agronomiques 12, 109119.Google Scholar
Faverdin, P and Peyraud, JL 2010. Nouvelles conduites d’élevage et conséquences sur le territoire: cas des bovins laitiers. Les colloques de l'Académie d'Agriculture de France 1, 89100.Google Scholar
Gac, A, Béline, F and Bioteau, T 2006. Flux de gaz à effet de serre (CH4 et N2O) et d'ammoniac (NH3) liés à la gestion des déjections animales: synthèse bibliographique et élaboration d'une base de données, Rapport final Paris, ADEME.Google Scholar
Gac, A, Béline, F, Bioteau, T and Mague, K 2007. A French inventory of gaseous emissions (CH4, N2O, NH3) from livestock manure management using a mass-flow approach. Livestock Science 112, 252260.Google Scholar
Guiziou, F and Béline, F 2005. In situ measurement of ammonia and greenhouse gas emissions from broiler houses in France. RAMIRAN 2002 10. International Conference on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture, Strbske, Slovakia, 14–18 May, vol. 96, 203–207.CrossRefGoogle Scholar
Halberg, N 1999. Indicators of resource use and environmental impact for use in a decision aid for Danish livestock farmers. Agriculture, Ecosystems & Environment 76, 1730.Google Scholar
Hjorth, M, Christensen, KV, Christensen, ML and Sommer, SG 2010. Solid-liquid separation of animal slurry in theory and practice. A review. Agronomy for Sustainable Development 30, 153180.CrossRefGoogle Scholar
INRA-AFZ 2004. Tables de composition et de valeur nutritive des matières premières destinées aux animaux d’élevage. 2ème édition revue et corrigée. Sauvant D, Perez JM, Tran G. coord., INRA Editions Versailles INRA, 304p.Google Scholar
INRA 2007. Alimentation des bovins, ovins, caprins. Ed INRA – QUAE Paris, 307p.Google Scholar
Jarvis, SC, Wilkins, RJet al. 1996. Opportunities for reducing the environmental impact of dairy farming managements: a systems approach. Grass and Forage Science 51, 2131.Google Scholar
Jarvis, S, Hutchings, N, Brentrup, F, Olesen, JE and van de Hoek, KW 2011. Nitrogen flows in farming systems across Europe. In The European nitrogen assessment. Sources, effects and policy perspectives (ed. Sutton, MA, Howard, CM, Erisman, JW et al.), pp. 211228. Cambridge University Press, Cambridge.Google Scholar
Justes, E, Beaudoin, N, Bertuzzi, P, Charles, R, Constantin, J, Dürr, C, Hermon, C, Joannon, A, Le Bas, C, Mary, B, Mignolet, C, Montfort, F, Ruiz, L, Sarthou, JP, Souchère, V, Tournebize, J, Savini, I and Réchauchère, O 2012. Réduire les fuites de nitrate au moyen de cultures intermédiaires : conséquences sur les bilans d’eau et d’azote, autres services écosystémiques. Synthèse du rapport d'étude, INRA (France), 60p.Google Scholar
Knudsen, MT, Kristensen, IBS, Berntsen, J, Petersen, BM and Kristensen, ES 2006. Estimated N leaching losses for organic and conventional farming in Denmark. Journal of Agricultural Science 144, 135149.Google Scholar
Larney, FJ and Hao, XY 2007. A review of composting as a management alternative for beef cattle feedlot manure in southern Alberta, Canada. 11. International Conference of the FAO ESCO-RENA Network on Recycling Agricultural, Municipal and Industrial Residues in Agriculture (RAMIRAN), Murcia, Spain, 6–9 October, vol. 98, 3221–3227.Google Scholar
Lashermes, G, Nicolardot, B, Parnaudeau, V, Thuries, L, Chaussod, R, Guillotin, ML, Lineres, M, Mary, B, Metzger, L, Morvan, T, Tricaud, A, Villette, C and Houot, S 2009. Indicator of potential residual carbon in soils after exogenous organic matter application. European Journal of Soil Science 60, 297310.Google Scholar
Leterme, P and Morvan, T 2010. Mieux valoriser la ressource dans le cadre de l’intensification écologique. Les colloques de l’Académie d’Agriculture de France 1, 101118.Google Scholar
Lopez-Ridaura, S, van der Werf, H, Paillat, JM and Le Bris, B 2009. Environmental evaluation of transfer and treatment of excess pig slurry by life cycle assessment. Journal of Environmental Management 90, 12961304.Google Scholar
Loubet, B, Asman, WAH, Theobald, MR, Hertel, O, Tang, SY, Daemmgen, U, Cellier, P and Sutton, MA 2009. Ammonia deposition near hot spots: processes, models and monitoring methods. In Atmospheric ammonia: detecting emission changes and environmental impacts. Results of an expert workshop under the convention on long-range transboundary air pollution (ed. Sutton, M, Reis, S and Baker, S), pp. 205267. Springer, Heidelberg.CrossRefGoogle Scholar
Machet, JM, Laurent, F, Chapot, JY, Dore, T and Dulout, A 1997. Maîtrise de l'azote dans les intercultures et les jachères. In Maîtrise de l'azote dans les agrosystèmes (ed. Lemaire, G and Nicolardot, B), pp. 271288. Inra Editions, Paris.Google Scholar
Machet, JM, Dubrulle, P, Damay, N, Duval, R, Recous, S and Mary, B 2007. Azofert: a new decision support tool for fertliser N advice based on a dynaminc version of the predictive balance sheet method. 16. International Symposium of the International Scientific Centre of Fertilizers (CIEC), ‘Mineral versus Organic Fertilization: Conflict or Synergism’, Gand, Belgium.Google Scholar
Maguire, RO, Kleinman, PJA, Dell, CJ, Beegle, DB, Brandt, RC, McGrath, JM and Ketterings, QM 2011. Manure application technology in reduced tillage and forage systems: a review. Journal of Environmental Quality 40, 292301.Google Scholar
Marini, JC and van Amburgh, ME 2005. Partition of nitrogen excretion in urine and the feces of Holstein replacement heifers. Journal of Dairy Science 88, 17781784.Google Scholar
McNeill, AM, Eriksen, J, Bergstrom, L, Smith, KA, Marstorp, H, Kirchmann, H and Nilsson, I 2005. Nitrogen and sulphur management: challenges for organic sources in temperate agricultural systems. Soil Use and Management 21, 8293.Google Scholar
Micol, D, Hoch, T and Agabriel, J 2003. Besoins protéiques et maîtrise des rejets azotés du bovin producteur de viande. Fourrages 174, 231242.Google Scholar
Mitran, L, Harter-Dennis, JM and Meisinger, IJ 2008. Determining the nitrogen budget and total ammoniacal nitrogen emissions from commercial broilers grown in environmental chambers. Journal of Applied Poultry Research 17, 3446.Google Scholar
Mondelaers, K, Aertsens, J and van Huylenbroeck, G 2009. A meta-analysis of the differences in environmental impacts between organic and conventional farming. British Food Journal 111, 10981119.Google Scholar
Morvan, T, Alard, V and Ruiz, L 2000. Interêt environnemental de la betterave fourragère. Fourrages 163, 315322.Google Scholar
Muller-Lindenlauf, M, Deittert, C and Kopke, U 2010. Assessment of environmental effects, animal welfare and milk quality among organic dairy farms. Livestock Science 128, 140148.Google Scholar
Neijat, M, House, JD, Guenter, W and Kebreab, E 2011. Production performance and nitrogen flow of shaver white layers housed in enriched or conventional cage systems. Poultry Science 90, 543554.Google Scholar
Paillat, J-M, Lopez-Ridaura, S, Guerrin, F, Van der Werf, H, Morvan, T and Leterme, P 2009. Simulation de la faisabilité d'un plan d'épandage de lisier de porc et conséquences sur les émissions gazeuses au stockage et à l'épandage. Journées Recherche Porcine 41, 271276.Google Scholar
Peyraud, JL, Le Gall, A, Delaby, L, Faverdin, P, Brunschwig, P and Caillaud, D 2009. What will be to-morrow the forage systems and the types of dairy cow breeds? Fourrages 197, 4770.Google Scholar
Peyraud, JL, Vérité, R and Delaby, L 1995. Rejets azotés chez les vaches laitières: effets du type d'alimentation et du niveau de production des animaux. Fourrages 142, 131144.Google Scholar
Pflimlin, A, Irle, A and Mirabal, Y 2006. Contribution du troupeau laitier aux excédents d’azote et de phosphore et aux risques pour l'eau au niveau régional. Projet Greendairy, Rapport de synthèse. Institut de l'élevage, Paris. 122 pp.Google Scholar
Portejoie, S, Dourmad, JY, Martinez, J and Lebreton, Y 2004. Effect of lowering dietary crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. Livestock Production Science 91, 4555.Google Scholar
Rigolot, C, Espagnol, S, Pomar, C and Dourmad, JY 2010a. Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part I: animal excretion and enteric CH4, effect of feeding and performance. Animal 4, 14011412.Google Scholar
Rigolot, C, Espagnol, S, Robin, P, Hassouna, M, Béline, F, Paillat, JM and Dourmad, JY 2010b. Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part II: effect of animal housing, manure storage and treatment practices Animal 4, 14131424.Google Scholar
Rochette, P, Worth, DE, Lemke, RL, McConkey, BG, Pennock, DJ, Wagner-Riddle, C and Desjardins, RL 2008. Estimation of N2O emissions from agricultural soils in Canada. I. Development of a country-specific methodology. Canadian Journal of Soil Science 88, 641654.Google Scholar
Rotz, CA 2004. Management to reduce nitrogen losses in animal production. Journal of Animal Science 82 (E-Suppl), E119E137.Google Scholar
Samson, E and Dupraz, P 2009. Performance économique, performance environnementale, quelles mesures? Une exploration statistique de la base RICA Environnement (première version) [Communication orale]. Séminaire SMART, 21 September, Rennes, France.Google Scholar
Schils, RLM, Olesen, JE, del Prado, A and Soussana, JF 2007. A review of farm level modelling approaches for mitigating greenhouse gas emissions from ruminant livestock systems. Livestock Science 112, 240251.Google Scholar
Simon, JC, Vertès, F, Decau, ML and Le Corre, L 1997. Les flux d'azote au pâturage. 1. Bilans à l'exploitation et lessivage du nitrate sous prairies Fourrages 151, 249262.Google Scholar
Szanto, G 2009. NH3 dynamics in composting: assessment of the integration of composting in manure management chains. The Netherlands, Wageningen UR.Google Scholar
Thiébeau, P, Lô-Pelzer, E, Klumpp, K, Corson, M, Hénault, C, Bloor, J, de Chezelles, E, Soussana, JF, Lett, JM and Jeuffroy, MH 2010. Conduite des légumineuses pour améliorer l’efficience énergétique et réduire les émissions de gaz à effet de serre à l’échelle de la culture et de l’exploitation agricole. Innovations Agronomiques 11, 4558.Google Scholar
Valk, H 1994. Effects of partial replacement of herbage by maize silage on N-utilization and milk production of dairy cows. Livestock Production Science 40, 241252.Google Scholar
van Vuuren, AM and Meijs, JAC 1987. Effects of herbage composition and supplement feeding on the excretion of nitrogen in dung and urine by grazing dairy cows. In Animal manure on grassland and fodder crops. Fertilizer or waste? (ed. van der Meer, HG, Unwin, RJ, van Dijk, TA and Ennik, GC), pp. 1725. Martinus Nijhoff Publishers, Leiden.Google Scholar
Vérité, R and Delaby, L 1998. Relation between nutrition, performances and nitrogen excretion in dairy cows. Rencontres Recherches Ruminants 5, 185192.Google Scholar
Vertès, F, Alard, V and Le Corre, L 2002. Résultats environnementaux: bilan apparent de l’azote. In A la recherche d'une agriculture durable Etude de systèmes herbagers économes en Bretagne (ed. Alard, V, Béranger, C and Journet, M), pp. 8089. Inra éditions, Paris.Google Scholar
Vertès, F, Simon, JC, Laurent, F and Besnard, A 2007. Prairie et qualité de l'eau. Evaluation des risques de lixiviation d'azote et optimisation des pratiques. Fourrages 192, 423440.Google Scholar
Vertès, F, Simon, JC, Giovanni, R, Grignani, C, Corson, M, Durand, P and Peyraud, JL 2008. Flux de nitrate dans les élevages bovins et qualité de l’eau: variabilité des phénomènes et diversité des conditions. in “Les risques de pollution nitrique dans les systèmes prairies - élevage bovins: la diversité face à la norme”, Ed. Académie Agriculture - Institut élevage, (2009), 6–26.Google Scholar
Veysset, P, Lherm, M and Bébin, D 2011. Productive, environmental and economic performances assessments of organic and conventional suckler cattle farming systems. Organic Agriculture 1, 116.Google Scholar
Zerulla, W, Barth, T, Dressel, J, Erhardt, K, von Locquenghien, KH, Pasda, G, Radle, M and Wissemeier, AH 2001. 3,4-dimethylpyrazole phosphate (DMPP) – a new nitrification inhibitor for agriculture and horticulture – an introduction. Biology and Fertility of Soils 34, 7984.CrossRefGoogle Scholar