Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T02:31:44.560Z Has data issue: false hasContentIssue false

Low-temperature Growth of Poly-Si and SiGe Thin Films by Reactive Thermal CVD and Fabrication of High Mobility TFTs over 50 cm2/Vs

Published online by Cambridge University Press:  01 February 2011

Jun-Ichi Hanna
Affiliation:
Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
Kousaku Shimizu
Affiliation:
Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
Get access

Abstract

We have established a new thermal CVD technique, Reactive Thermal CVD, for polycrystalline silicon (poly-Si) and silicon germanium (poly-SiGe) thin films aiming at thin film transistors (TFTs) applications, in which a low substrate temperature of 450°C enables us to use glass substrates. This technique achieved high crystallinity at very early stage of the film growth, resulting no amorphous incubation layer on the substrate surface. We fabricated bottom and top gate n-and p-channel TFTs with these of 200 nm thick films on SiO2/Si wafers and glass substrates, respectively: the high field effect mobilities as high as 55 cm2/Vs and 25 cm2/Vs were achieved in the bottom-gate and top-gate TFTs, respectively. Here, we discuss the technical requirements in the low-temperature CVD technique for the large-area poly-Si thin films and how they can be achieved in the reactive thermal CVD.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matsuda, A., J. Non-Cryst. Solids, 59&60, 767 (1983).Google Scholar
2. Matsuda, A., Yamazaki, S., Nakagawa, K., Ohkushi, H., Tamnaka, K., Iizima, S., Matumura, M., and Yamamoto, H., Jpn. J. appl. Phys., 19, L305 (1980).Google Scholar
3. Tsai, C. C., Anderson, G. B. and Thonpson, R.: J. Non-Cryst. Solids, 137&138, 673 (1991).Google Scholar
4. Shibata, N., Fukuda, K., Ohtoshi, H., Hanna, J., Oda, S., and Shimizu, I., Jpn. J. Appl. Phys., 26, L10 (1987).Google Scholar
5. Matsumura, H., Hosoda, Y., and Furukawa, S., Mat. Res. Soc. Proc., 283, 623 (1993).Google Scholar
6. Hanna, J., Kamo, A., Komiya, T., Shimizu, I., and Kokado, H., J. Non-Cryst. Solids, 114, 172 (1989).Google Scholar
7. Nagahara, T., Fujimoto, K., Kohno, N., Kashiwagi, Y., and Kakinoki, H., Jpn. J. Appl. Phys. 31, 4555 (1992).Google Scholar
8. Kohno, N., Nagahara, T., Fujimoto, K., Kashiwagi, Y., and Kakinoki, H., Mat. Res. Soc. Proc., 283, 629 (1993).Google Scholar
9. Yamamoto, M., Miyauchi, M., and Hanna, J.: Appl. Phys. Lett., 63, 2508 (1993).Google Scholar
10. Yamamoto, M. and Hanna, J.: Appl. Phys. Lett., 64, 3467 (1994).Google Scholar
11. Hanna, J., Ohuchi, T. and Yamamoto, M.: Mat. Res. Soc. Proc., 358, 877 (1995).Google Scholar
12. Hanna, J., Mat. Res. Soc. Proc., 377, 105 (1995).Google Scholar
16. Shiota, K., Inoue, D., Minami, K. and Hanna, J.: J. Non-cryst. Solids, 227 & 230, 1074 (1998).Google Scholar
15. Shiota, K., Inoue, D., Minami, K., Yamamoto, M., and Hanna, J.: Mat. Res. Soc. Proc., 452, 1001 (1997).Google Scholar
14. Shiota, K., Inoue, D., Minami, K., Yamamoto, M., and Hanna, J.: Jpn. J. Appl. Phys., 36, L989 (1997).Google Scholar
13. Yoshizawa, F., Shiota, K., Inoue, D., and Hanna, J., Mat. Res. Soc. Proc., 467, 349 (1997).Google Scholar
17. Hanna, J., Shiota, K., and Yamamoto, M.: Mat. Res. Soc. Proc., 507, 945 (1998).Google Scholar
18. Hanna, J. and Shimizu, K.: J. Organomet. Chem. 611, 531 (2000).Google Scholar
19. Shimizu, K., Zhang, J.J., Lee, J.W., and Hanna, J.: Mat. Res. Soc. Symp. Proc. 638, F14.13.1 (2001).Google Scholar
20. Zhang, J., Shimizu, K., and Hanna, J.: J. Non-cryst. Solids, 299 & 302, 163 (2002).Google Scholar
21. Zhang, J., Shimizu, K., and Hanna, J.: Appl. Phys. Lett., 82, 1745 (2003).Google Scholar
22. Meakin, D., Stoemenos, J., Migliorato, P. and Economou, N.A.: J. Appl. Phys. 61, 5031 1987.Google Scholar
23. Shimizu, K., Zhang, J.J., Lee, J-W., and Hanna, J., Mat. Res. Soc. Proc., 686, 107 (2002).Google Scholar
24. Lee, J. W., Shimizu, K., and Hanna, J.: Mat. Res. Soc. Symp. Proc. 715, A16.1.1 (2002).Google Scholar
25. Hanna, J., Oda, S., Shibata, N., Miyaichi, A., Tanabe, A., Fukuda, K., Ohtoshi, T., Nguyen, H., and Shimizu, I., Mat. Res. Soc. Proc., 70, 11 (1986).Google Scholar
26. Hanna, J., Kamo, A., Azuma, M., Shibata, N., Shirai, H., and Shimizu, I., Mat. Res. Soc. Proc., 118, 79 (1988).Google Scholar
27. Hanna, J., Kamo, A., Komiya, T., Shimizu, I., and Kokado, H., J. Non-cryst. Solids, 114, 172 (1989).Google Scholar
28. Hanna, J., Kamo, A., Komiya, T., Nguyen, H.D., Shimizu, I., and Kokado, H., Mat. Res. Soc. Proc., 149, 11 (1989).Google Scholar
29. Wadayama, T., Kayama, H., Hatta, A., Suetake, W., and Hanna, J., Jpn. J.Appl. Phys., 29, 1884 (1990).Google Scholar
30. Komiya, T., Kamo, A., Kujirai, H., Shimizu, I., and Hanna, J., Mat. Res. Soc. Proc., 164, 63 (1990).Google Scholar
31. Kawamura, C., Shimizu, I., and Hanna, J., J. Non-Cryst. Solids, 1137 & 138, 697 (1991).Google Scholar
32. Hanna, J., New Functionality Materials, Ed. by Tsuruta, T., Doyama, M., and Seo, M., Vol. C Elsevier Science Publishers, 189 (1993).Google Scholar
33. Endo, K., Bunyo, M., Shimizu, I., and Hanna, J., Mat. Res. Soc. Proc., 283, 641 (1993).Google Scholar