Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T04:05:25.685Z Has data issue: false hasContentIssue false

Growth Morphology of Vicinal Hillocks on the {101} Face of KH2PO4: Evidence of Surface Diffusion

Published online by Cambridge University Press:  21 February 2011

T. A. Land
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
J. J. De Yoreo
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
J. D. Lee
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
J. R. Ferguson
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

The growth morphologies of vicinal hillocks on KH2PO4 {101} surfaces have been investigated using atomic force microscopy. Both 2D and spiral dislocation growth hillocks are observed on the same crystal surface at supersaturations of ∼5 %. Growth occurs on monomolecular 5 Å steps both by step-flow and through layer-by-layer growth. The distribution of islands on the terraces demonstrate that surface diffusion is an important factor during growth. Terraces that are less than the diffusion length do not contain any islands. This, together with the length scale of the inter island spacing and the denuded zones provide an estimate of the diffusion length. In situ experiments at very low supersaturation (∼0.1 %) show that growth is a discontinuous process due to step pinning. In addition, in situ images allow for the direct determination of the fundamental growth parameters a, the step edge energy, and β, the kinetic coefficient.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tersoff, J., Denier van der Gon, A.W., and Tromp, R.M., Phys. Rev. Lett. 72, 266 (1994).Google Scholar
2. Johnson, M.D., Orme, C., Hunt, A.W., Graff, D., Sudijono, J., Sander, L.M., and Orr, B.G., Phys. Rev. Lett. 72, 116 (1994).Google Scholar
3. Mo, Y.W., Kleiner, J., Webb, M.B., and Lagally, M.G., Phys. Rev. Lett. 66, 1998 (1991).Google Scholar
4. DeYoreo, J.J., Land, T.A. and Dakfhys, B.. Rev. Lett. 73, 838 (1994).Google Scholar
5. Gratz, A.J., Manne, S. and Hansma, P.K., Science 251, 1343 (1991).Google Scholar
6. Schlom, D.G., Anselmetti, D., Bednorz, J.G., Broom, R.F., Catana, A., Frey, T., Gerber, Ch., Güntherodt, H.-J., Lang, H.P., and Mannhart, J., Z. Phys. B 86, 163 (1992).Google Scholar
7. Durbin, S.D. and Carlson, W.E., J. Cryst. Growth 122, 71 (1992).Google Scholar
8. Gratz, A.J., Hillner, P.E. and Hansma, P.K., Geochem. et Cosmochim. Acta 57, 491 (1993).Google Scholar
9. Burton, W.K., Cabrera, N., and Frank, F.C., Phil. Trans. Roy. Soc. London A 243, 299 (1951).Google Scholar
10. Drake, B., Prater, C.B., Weisenhorn, A.L., Gould, S.A.C., Albrecht, T.R., Quate, C.F., Cannell, D.S., Hansma, H.G. and Hansma, P.K., Science 243, 1586 (1989).Google Scholar
11. Schwoebel, R.L. and Shipsey, E.J., J. Appl. Phys. 37, 3682 (1966).Google Scholar
12. Kunkel, R., Poelsema, B., Verheij, L.K., Comsa, G., Phys. Rev. Lett. 65, 733 (1990).Google Scholar
13. Vekilov, P.G., Kuznetsov, Yu.G. and Chernov, A.A., J. Cryst. Growth 121, 44 and 643 (1992).Google Scholar
14. Alexander, J.I., DeYoreo, J.J. and Land, T.A. (In progress).Google Scholar
15. Söhnel, O., J. Cryst. Growth 57, 101 (1982).Google Scholar