Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T02:06:43.866Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulations of Dislocations in TlBr Crystals under an Electrical Field

Published online by Cambridge University Press:  13 July 2016

X. W. Zhou*
Affiliation:
Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550, U.S.A.
M. E. Foster
Affiliation:
Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550, U.S.A.
P. Yang
Affiliation:
Sandia National Laboratories, 1515 Eubank SE, Albuquerque, NM 87185, U.S.A.
F. P. Doty
Affiliation:
Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550, U.S.A.
*
*(Email: xzhou@sandia.gov)
Get access

Abstract

TlBr crystals have superior radiation detection properties; however, their properties degrade in the range of hours to weeks when an operating electrical field is applied. To account for this rapid degradation using the widely-accepted vacancy migration mechanism, the vacancy concentration must be orders of magnitude higher than any conventional estimates. The present work has incorporated a new analytical variable charge model in molecular dynamics (MD) simulations to examine the structural changes of materials under electrical fields. Our simulations indicate that dislocations in TlBr move under electrical fields. This discovery can lead to new understanding of TlBr aging mechanisms under external fields.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schlesinger, T. E., Toney, J. E., Yoon, H., Lee, E. Y., Brunett, B. A., Franks, L., and James, R. B., Mater. Sci. Eng., R 32, 103 (2001).CrossRefGoogle Scholar
Churilov, A., Ciampi, G., Kim, H., Cirignano, L., Higgins, W., Olschner, F., and Shah, K., IEEE Trans. Nuc. Sci., 56, 1875 (2009).CrossRefGoogle Scholar
Hitomi, K., Matsumoto, M., Muroi, O., Shoji, T., and Hiratate, Y., IEEE Trans. Nuc. Sci., 49, 2526 (2002).CrossRefGoogle Scholar
Shorohov, M., Kouznetsov, M., Lisitskiy, I., Ivanov, V., Gostilo, V., and Owens, A., IEEE Trans. Nuc. Sci., 56, 1855 (2009).CrossRefGoogle Scholar
Hitomi, K., Kikuchi, Y., Shoji, T., and Ishii, K., IEEE Trans. Nuc. Sci., 56, 1859 (2009).CrossRefGoogle Scholar
Hitomi, K., Shoji, T., and Nlizeki, Y., Nuc. Instru. Meth. Phys. Res. A, 585, 102 (2008).CrossRefGoogle Scholar
Kozlov, V., Kemell, M., Vehkamaki, M., and Leskela, M., Nuc. Instru. Meth. Phys. Res. A, 576, 10 (2007).CrossRefGoogle Scholar
Dönmez, B., He, Z., Kim, H., Cirignano, L., and Shah, K., Nuc. Instru. Meth. Phys. Res. A, 623, 1024 (2010).CrossRefGoogle Scholar
Costa, F., Mesquita, C., and Hamada, M., IEEE Trans. Nuc. Sci., 56, 1817 (2009).CrossRefGoogle Scholar
Kozorezov, A., Gostilo, V., Owens, A., Quarati, F., Shorohov, M., Webb, M. A., and Wigmore, J. K., J. App. Phys., 108, 064507 (2010).CrossRefGoogle Scholar
Datta, A., Becla, P., and Motakef, S., Nuc. Instru. Meth. Phys. Res. A, 784, 37 (2015).CrossRefGoogle Scholar
Lordi, V., J. Cryst. Growth, 379, 84 (2013).CrossRefGoogle Scholar
Leaõ, C. R., and Lordi, V., Phys. Rev. Lett., 108, 246604 (2012).CrossRefGoogle Scholar
Leaõ, C. R., and Lordi, V., Phys. Rev. B, 87, 081202(R) (2013).CrossRefGoogle Scholar
Zhou, X. W., Foster, M. E., Jones, Reese, Yang, P., Fan, H., and Doty, F. P., J. Mater. Sci. Res., 4, 15 (2015).Google Scholar
Pauling, L., J. Am. Chem. Soc. 54, 3570 (1932).CrossRefGoogle Scholar
Mulliken, R. S., J. Chem. Phys. 2, 782 (1934).CrossRefGoogle Scholar
Streitz, F. H. and Mintmire, J. W., Phys. Rev. B 50, 11996 (1994).CrossRefGoogle Scholar
Zhou, X. W., Wadley, H. N. G., Filhol, J.-S., and Neurock, M. N., Phys. Rev. B 69, 035402 (2004).CrossRefGoogle Scholar
Gonze, X., and Lee, C., Phys. Rev. B, 55, 10355 (1997).CrossRefGoogle Scholar
Stukowski, A., Modelling Simul. Mater. Sci. Eng., 18, 015012 (2010). http://www.ovito.org/.CrossRefGoogle Scholar