Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T18:35:15.173Z Has data issue: false hasContentIssue false

Afit: a bioinformatic tool for measuring aphid fitness and invasiveness

Published online by Cambridge University Press:  22 November 2016

A. Nardelli
Affiliation:
Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
V. Peona
Affiliation:
Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
A. Toschi
Affiliation:
Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
M. Mandrioli*
Affiliation:
Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
G.C. Manicardi
Affiliation:
Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
*
*Author for correspondence Phone: (+39) 059 2055544 Fax: (+39) 059 2055548 E-mail: mauro.mandrioli@unimo.it

Abstract

A careful measure of fitness represents a crucial target in crop pest management and becomes fundamental considering extremely prolific insects. In the present paper, we describe a standardized rearing protocol and a bioinformatics tool to calculate aphid fitness indices and invasiveness starting from life table data. We tested the protocol and the bioinformatic tool using six Myzus persicae (Sulzer) asexual lineages in order to investigate if karyotype rearrangements and ecotype could influence their reproductive performances. The tool showed that different karyotypes do not influence adaptive success and put in evidence a marked invasive potential of the M. persicae lineage 64. The presence of a similar fitness rate of 33H and 7GK asexual lineages (both possessing intra-individual karyotype variations) in respect to the asexual lineage 1 (with a standard karyotype) represents an important demonstration of the potentiality of holocentric chromosomes to reduce the effects of chromosome rearrangements.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asin, L. & Pons, X. (2001) Effect of high temperature on the growth and reproduction of corn aphids (Homoptera: Aphididae) and implications for their population dynamics on the North-eastern Iberian Peninsula. Environmental Entomology 30, 11271134.Google Scholar
Behle, R.W. & Michels, G.J. (1990) Russian wheat aphid (Homoptera, Aphididae) development, reproduction, and survival on wheat and rye grown in 4 host-plant media. Southwestern Entomology 15, 109121.Google Scholar
Benton, C.T.G., Lundberg, P., Dall, S.R.X., Kendall, B.E. & Gaillard, J.M. (2006) Estimating individual contributions to population growth: evolutionary fitness in ecological time. Proceedings of the Royal Society B 273, 547555.Google Scholar
Birch, L.C. (1948) The intrinsic rate of natural increase of an insect population. Animal Ecology 17, 1526.Google Scholar
Chen, D.Q., Montllor, C.B. & Purcell, A.H. (2000) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi . Entomologia Experimentalis et Applicata 95, 315323.CrossRefGoogle Scholar
Conti, B., Bueno, V., Sampaio, M. & Sidney, L. (2010) Reproduction and fertility life table of three aphid species (Macrosiphini) at different temperatures. Revista Brasileira de Entomologia 54, 654660.Google Scholar
Costello, M.J. & Altierim, M.A. (1995) Abundance, growth rate and parasitism of Brevicoryne brassicae and Myzus persicae (Homoptera: Aphididae) on broccoli grown in living mulches. Agriculture, Ecosystems and Environment 52, 187196.CrossRefGoogle Scholar
De Loach, C.J. (1974) Rate of increase of populations of cabbage, green peach, and turnip aphids at constant temperatures. Annals of the Entomological Society of America 67, 332340.Google Scholar
Erlykova, N. (2003) Inter- and intra-clonal variability in the photoperiodic response and fecundity in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae). European Journal of Entomology 100, 3137.CrossRefGoogle Scholar
Giles, K.L., Madden, R.D., Stockland, R., Payton, M.E. & Dillwith, J.W. (2002) Host plants affect predator fitness via the nutritional value of herbivore prey: investigation of a plant-aphid-ladybeetle system. BioControl 47, 121.CrossRefGoogle Scholar
Girma, M., Wilde, G. & Reese, J.C. (1990) Influence of temperature and plant-growth stage on development, reproduction, life-span, and intrinsic rate of increase of the Russian wheat aphid (Homoptera, Aphididae). Environmental Entomology 19, 14381442.CrossRefGoogle Scholar
Hatano, E., Baverstock, J., Kunert, G., Pell, J.K. & Weisser, W.W. (2012) Entomopathogenic fungi stimulate transgenerational wing induction in pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae). Ecological Entomology 37, 7582.CrossRefGoogle Scholar
Hawley, C.J., Peairs, F.B. & Randolph, T.L. (2003) Categories of resistance at different growth stages in halt, a winter wheat resistant to the Russian wheat aphid (Homoptera: Aphididae). Journal of Economical Entomology 96, 214219.Google Scholar
Hildebrand, D.F., Brown, G.C., Jackson, D.M. & Hamilton-Kemp, T.R. (1993) Effects of some leaf emitted volatile compounds on aphid population increase. Journal of Chemical Ecology 19, 18751887.Google Scholar
Hughes, L. & Bazzaz, F.A. (2001) Effects of elevated CO2 on five plant-aphid interactions. Entomologia Experimentalis et Applicata 99, 8796.Google Scholar
Judge, F.D. & Schaefers, G.A. (1971) Effects of crowding on alary polymorphism in the aphid Chaetosiphon fragaefolii . Journal of Insect Physiology 17, 143148.Google Scholar
Kati, A.N., Mandrioli, M., Skouras, P.J., Malloch, G.L., Voudouris, C.Ch., Venturelli, M., Manicardi, G.C., Tsitsipis, J.A., Fenton, B. & Margaritopoulos, J.T. (2014) Recent changes in the distribution of carboxylesterase genes and associated chromosomal rearrangements in Greek populations of the tobacco aphid Myzus persicae nicotianae . Biological Journal of the Linnean Society 113, 455470.Google Scholar
Kidd, N.A.C. & Tozer, D.J. (1984) Host plant and crowding effects in the induction of alatae in the large pine aphid, Cinara pinea . Entomologia Experimentalis et Applicata 35, 3742.Google Scholar
Kieckhefer, R.W. & Elliott, N.C. (1989) Effect of fluctuating temperatures on development of immature Russian wheat aphid (Homoptera, Aphididae) and demographic statistics. Journal of Economical Entomology 82, 119122.Google Scholar
Kunert, G. & Weisser, W.W. (2003) The interplay between density-and trait-mediate effects in predator-prey interactions: a case study in aphid wing polymorphism. Oecologia 135, 304312.Google Scholar
Leonardo, T.E. (2004) Removal of a specialization-associated symbiont does not affect aphid fitness. Ecology Letters 7, 461468.CrossRefGoogle Scholar
Loxdale, H.D., Vorwek, S. & Forneck, A. (2013) The unstable ‘clone’: evidence from monitoring AFLP-based mutations for short-term clonal genetic variation in two asexual lineages of the grain aphid, Sitobion avenae (F.). Bulletin of Entomological Research 103, 1118.Google Scholar
Lu, H., Yang, P., Xu, Y., Luo, L., Zhu, J., Cui, N., Kang, L. & Cui, F. (2016) Performances of survival, feeding behavior, and gene expression in aphids reveal their different fitness to host alteration. Scientific Reports 6, 19344.Google Scholar
Lushai, G. & Loxdale, H.D. (2002) The biological improbability of a clone. Genetical Research 79, 19.CrossRefGoogle ScholarPubMed
Ma, Z. & Bechinski, E. (2009) Life tables and demographic statistics of Russian wheat aphid (Hemiptera: Aphididae) reared at different temperatures and on different host plant growth stages. European Journal of Entomology 106, 205210.Google Scholar
Manicardi, G.C., Nardelli, A. & Mandrioli, M. (2015) Fast chromosomal evolution and karyotype instability: recurrent chromosomal rearrangements in the peach potato aphid Myzus persicae (Hemiptera: Aphididae). Biological Journal of the Linnean Society 116, 519529.Google Scholar
Mehrparvar, M., Zytynska, S.E. & Weisser, W.W. (2013) Multiple cues for winged morph production in an aphid metacommunity. PLoS ONE 8, e58323.Google Scholar
Merrill, S., Peairs, F.B., Miller, H.R., Randolph, T.L., Rudolph, J.B. & Talmichm, E.E. (2008) Reproduction and development of Russian wheat aphid Biotype 2 on crested wheatgrass, intermediate wheatgrass, and susceptible and resistant wheat. Journal of Economical Entomology 101, 541545.Google Scholar
Merrill, S., Holtzer, T. & Peairs, F.B. (2009) Diuraphis noxia reproduction and development with a comparison of intrinsic rates of increase to other important small grain aphids: a meta-analysis. Environmental Entomology 38, 10611068.Google Scholar
Michels, G.J. & Behle, R.W. (1989) Influence of temperature on reproduction, development, and intrinsic rate of increase of Russian wheat aphid, Green-bug, and Bird cherry-oat aphid (Homoptera, Aphididae). Journal of Economical Entomology 82, 439444.Google Scholar
Miller, H.R., Randolph, T.L. & Peairs, F.B. (2003) Categories of resistance at four growth stages in three wheats resistant to the Russian wheat aphid (Homoptera: Aphididae). Journal of Economical Entomology 96, 673679.Google Scholar
Nowierski, R.M., Zeng, Z. & Scharen, A.L. (1995) Age specific life table modelling of the Russian wheat aphid (Homoptera, Aphididae) on barley grown in benzimidazole agar. Environmental Entomology 24, 12841290.CrossRefGoogle Scholar
Pucherelli, S., Peairs, F., Merrill, S. & Randolph, T. (2011) Russian wheat aphid (Hemiptera: Aphididae) reproduction and development on five non cultivated grass hosts. Arthropod-Plant Interactions 6, 6773.Google Scholar
Ramalho, F., Malaquias, J., Lira, A., Oliveira, F., Zanuncio, J. & Fernandes, F. (2015) Temperature-dependent fecundity and life table of the fennel aphid Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae). PLoS ONE 10, e0122490.Google Scholar
Randolph, T.L., Merrill, S. & Peairs, F.B. (2008) Reproductive rates of Russian wheat aphid (Hemiptera: Aphididae) biotypes 1 and 2 on a susceptible and a resistant wheat at three temperature regimes. Journal of Economical Entomology 101, 955958.CrossRefGoogle Scholar
Ronquist, F. & Ahman, I (1990) Reproductive rate of the Indian mustard aphid (Lipaphis erysimi pseudobrassicae) on different Brassica oilseeds: comparisons with Swedish strains of mustard (Lipaphis erysimi erysimi) and cabbage aphid (Brevicoryne brassicae). Annals of Applied Biology 116, 425430.Google Scholar
Sakurai, M., Koga, R., Tsuchida, T., Meng, X. & Fukatsu, T. (2005) Rickettsia symbiont in the pea aphid Acyrthosiphon pisum: novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera . Applied and Environmental Microbiology 71, 40694075.Google Scholar
Shaw, M.J.P. (1970) Effects of population density on alienicolae of Aphis fabae Scop. I. Effect of crowding on production of alatae in laboratory. Annals of Applied Biology 65, 191196.Google Scholar
Sloggett, J.J. & Weisser, W.W. (2002) Parasitoids induce production of the disperal morph of the pea aphid Acyrthosiphon pisum . Oikos 98, 323333.Google Scholar
Soffan, A. & Aldawood, A. (2014) Biology and demographic growth parameters of cowpea aphid (Aphis craccivora) on faba bean (Vicia faba) cultivars. Journal of Insect Science 14, 120121.Google Scholar
Stadler, B. & Dixon, A.F.G. (2005) Ecology and evolution of aphid-ant interactions. Annual Review of Ecology, Evolution and Systematics 36, 345372.Google Scholar
Stadler, B., Dixon, A.F.G. & Kindlmann, P. (2002) Relative fitness of aphids: effects of plant quality and ants. Ecology Letters 5, 216222.Google Scholar
Sutherland, O.R.W. (1969 a) The role of crowding in the production of winged forms by two strains of the pea aphid, Acyrthosiphon pisum . Journal of Insect Physiology 15, 13851410.Google Scholar
Sutherland, O.R.W. (1969 b) The role of the host plant in the production of winged forms by two strains of the pea aphid, Acyrthosiphon pisum . Journal of Insect Physiology 15, 21792201.Google Scholar
Taheri, S., Razmjou, J. & Rastegari, N. (2010) Fecundity and development rate of the bird cherry-oat aphid, Rhopalosiphum padi (L) (Homoptera: Aphididae) on six wheat cultivars. Plant Protection Science 46, 7278.Google Scholar
Takalloozadeh, H.M. (2010) Effects of host plants and various temperatures on population growth parameters of Aphis gossypii Glover (Homoptera: Aphididae). Middle-East Journal of Scientific Research 6, 2530.Google Scholar
Taylor, F. (1981) Ecology and evolution of physiological time in insects. American Naturalist 117, 123.Google Scholar
Tukjapurkar, S. (1990) Delayed reproduction and fitness in variable environments. Proceedings of the National Academy of Science USA 87, 11391143.Google Scholar
Weisser, W.W. & Stadler, B. (1994) Phenotypic plasticity and fitness in aphids. European Journal of Entomology 91, 7178.Google Scholar
Weisser, W.W., Braendle, C. & Minoretti, N. (1999) Predator-induced morphological shift in the pea aphid. Proceedings of the Royal Society B: Biological Sciences 266, 11751181.Google Scholar
Wyatt, I. & White, P. (1977). Simple estimation of intrinsic increase rates for aphids and tetranychid mites. Journal of Applied Ecology 14, 757766.Google Scholar