Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T06:48:21.975Z Has data issue: false hasContentIssue false

Direct Bonding of Silicon Wafers with Simultaneous Dopant Diffusion

Published online by Cambridge University Press:  21 March 2011

Igor V. Grekhov
Affiliation:
Solid State Electronics Division, Ioffe Physico-Technical Institute RAS, Polytekhnicheskaya ul. 26, 194021, St. Petersburg, RUSSIA
Tatiana S. Agrunova
Affiliation:
Solid State Electronics Division, Ioffe Physico-Technical Institute RAS, Polytekhnicheskaya ul. 26, 194021, St. Petersburg, RUSSIA
Lioudmila S. Kostina
Affiliation:
Solid State Electronics Division, Ioffe Physico-Technical Institute RAS, Polytekhnicheskaya ul. 26, 194021, St. Petersburg, RUSSIA
Natalia M. Shmidt
Affiliation:
Solid State Electronics Division, Ioffe Physico-Technical Institute RAS, Polytekhnicheskaya ul. 26, 194021, St. Petersburg, RUSSIA
Helmut Föll
Affiliation:
Materials Science Department, Christian-Albrechts-University of Kiel, Kaiserstr. 2, Kiel 24143, GERMANY
Konstantin B. Kostin
Affiliation:
Materials Science Department, Christian-Albrechts-University of Kiel, Kaiserstr. 2, Kiel 24143, GERMANY
Get access

Abstract

Bonding of silicon surfaces in aqueous solution of compounds containing III and IV impurities was performed for the first time. It was observed that the presence of aluminum at the bonding interface improved structural quality of the interface. This phenomenon is explained by the increase of the contact area due to Al-OH group sandwiched between the water molecules adsorbed at hydrophilic wafer surfaces at the first bonding stage. The incorporation of Al produces a p-type layer and the I/V characteristics of the resultant np+n diodes is shown not to be influenced by the presence of the bonding interface. The technique developed could be advantageous for the design of multi-layer large area semiconductor devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tong, Q.-Y., Gösele, U., Semiconductor Wafer Bonding: Science and Technology, (J. Wiley&Sons, Inc., 1999) pp.49123.Google Scholar
2. Bengtsson, S., J. of Electronic Mater. 21, 841 (1992).Google Scholar
3. Plößl, A. and Kräuter, G., Mater. Sci.&Eng. R25, 1 (1999).Google Scholar
4. Kim, E.D., Kim, N.K.. Kim, S.C., Grekhov, I.V., Argunova, T.S., Kostina, L.S., and Kudriavtseva, T.V., Electronic Letters 31, 2047 (1995).Google Scholar
5. Argunova, T.S., Vitman, R.F., Grekhov, I.V., M.Yu Gutkin, Kostina, L.S., Shturbin, A.V., Häertwig, J., Ohler, M., Kim, E.D., Kim, S.C., Solid State Physics 41, 1790 (1999).Google Scholar
6. Maszara, W.P., Jiang, B.-L., Yamada, A., Rosgonyi, G.A., Baumgart, H., and Kock, A.J.R. de, J. Appl. Phys. 69, 257 (1991).Google Scholar
7. Stengl, R., Tan, T., and Gösele, U., Jpn. J. Appl. Phys. 28, 1735 (1989).Google Scholar
8. Ohring, M., The Materials Science and Thin Films, (Acad. Press Limited, 1991) p.493.Google Scholar