Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T04:02:00.950Z Has data issue: false hasContentIssue false

Hygroscopic Growth of Self-Assembled Layered Surfactant Molecules at the Interface between Air and Organic salts

Published online by Cambridge University Press:  10 February 2011

Yongsoon Shin
Affiliation:
Pacific Northwest National Laboratory, Richalnd, WA 99352
Li-Qiong Wang
Affiliation:
Pacific Northwest National Laboratory, Richalnd, WA 99352
Glen E. Fryxell
Affiliation:
Pacific Northwest National Laboratory, Richalnd, WA 99352
Greg J. Exarhos
Affiliation:
Pacific Northwest National Laboratory, Richalnd, WA 99352
Get access

Abstract

In this paper, we report a self-assembly of surfactant molecules at the interface of air/hygroscopic quaternary ammonium salts such as tetrabutylammonium acetate (TBAAc), tetrabutylammonium bromide (TBAB), and tetrabutylammonium nitrate (TBAN), where they show different hygroscopicity, TBAAc > TBAB > TBAN. Homogeneously dissolved surfactants rearrange themselves when they contact air due to high moisture adsorption behavior of such organic salts. Highly ordered lamellar phases with different lattice spacings have been observed when surfactants with long alkyl chains were used. Alkylammonium halides form monolayers, while neutral alkylamines forms bilayers based upon basal spacings of their X-ray diffraction patterns. The change in basal spacings in lamellar patterns, the alkyl chain conformation of surfactants, and Hbonding property of neutral amine surfactants are discussed in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Yan, Y., and Bein, T., Chem. Mater. 5, 905 (1993).Google Scholar
(2) Okahata, Y., and Shimizu, A., Langmuir 5, 954 (1989).Google Scholar
(3) Vaia, R. A., Ishii, H., and Giannelis, E. P., Chem. Mater. 5, 1694 (1993).Google Scholar
(4) Georgakilas, V., Gournis, D., and Petridis, D., Angew. Chem. Int. Ed. Engl. 40, 4286 (2001).Google Scholar
(5) Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D. I., Maxwell, R., Stucky, G. D., Krishmamurty, M., Petruff, P., Firouzi, A., Janicke, M., and Chmelka, B., Science 261, 12299 (1993).Google Scholar
(6) Ogawa, M., and Kuroda, K., Chem. Rev. 95, 399 (1995).Google Scholar
(7) Huo, Q., Margolese, D. I., and Stucky, G. D., Chem. Mater. 8, 1147 (1996).Google Scholar
(8) Tanev, P. T., and Pinnavaia, T. J., Chem. Mater. 8, 2068 (1996).Google Scholar
(9) Shimojima, A., Mochizuki, D., and Kuroda, K., Chem. Mater. 13, 3603 (2001).Google Scholar
(10) Shimojima, A., Sugahara, Y., and Kuroda, K., J. Am. Chem. Soc. 120, 4528 (1998).Google Scholar
(11) Lee, L., Huang, M., and Hsu, H., J. Chem. Eng. Data 44, 528 (1999).Google Scholar
(12) Welton, T., Chem. Rev. 99, 2071 (1999).Google Scholar
(13) Kumar, S., Bansal, D., and Kumar, S., Langmuir 13, 5071 (1997).Google Scholar
(14) Yu, Z.J., and Xu, G. J., J. Phys. Chem. 93, 7441 (1989).Google Scholar
(15) Wang, L.Q., Liu, J., Exarhos, G. J., and Bunker, B. C., Langmuir 12, 2663 (1996).Google Scholar
(16) See http://www.aist.go.jp/RIODB/SDSB/Google Scholar
(17) Gao, W., and Reven, L., Langmuir 11, 1860 (1995).Google Scholar
(18) Shimojima, A., Umeda, N., and Kuroda, K., Chem. Mater. 13, 3610 (2001).Google Scholar