Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T09:40:38.826Z Has data issue: false hasContentIssue false

Zeeman splittings of the 5D07F2 transitions of Eu3+ ions implanted into GaN

Published online by Cambridge University Press:  02 March 2011

V. Kachkanov
Affiliation:
Diamond Light Source Ltd, Didcot OX11 0DE, United Kingdom
K.P. O’Donnell
Affiliation:
SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
C. Rice
Affiliation:
Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
D. Wolverson
Affiliation:
Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
R.W. Martin
Affiliation:
SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
K. Lorenz
Affiliation:
Instituto Tecnológico e Nuclear, Sacavém 2686-953, Portugal
E. Alves
Affiliation:
Instituto Tecnológico e Nuclear, Sacavém 2686-953, Portugal
M. Bockowski
Affiliation:
Institute of High Pressure Physics, Polish Academy of Science 01-142 Warsaw, Poland
Get access

Abstract

We report the magnetic field splittings of emission lines assigned to the 5D07F2 transitions of Eu3+ centres in GaN. The application of a magnetic field in the c-axis direction (Bc) leads to a splitting of the major lines at 621 nm, 622 nm and 622.8 nm into two components. The Zeeman splitting is linear with magnetic field up to 5 Tesla for each line. In contrast, a magnetic field applied in the growth plane (Bc) does not influence the photoluminescence spectra. The estimated g-factors vary slightly from sample to sample with mean values of g ~2.8, ~1.5 and ~2.0 for the emission lines at 621 nm, 622 nm and 622.8 nm respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Henderson, B. and Imbusch, G. F., Optical Spectroscopy of Inorganic Solids (Clarendon Press, Oxford, 1989; in Paperback 2006).Google Scholar
2. Kaminskii, A.A., Laser Crystals: Their Physics and Properties, 2nd edition (Spinger-Verlag, Berlin, 1990).Google Scholar
3. O’Donnell, K.P., Dierolf, V. (Eds.) Rare-Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications (Spinger, Dordrecht, 2010).Google Scholar
4. Heikenfeld, J., Garter, M., Lee, D. S., Birkhahn, R., and Steckl, A. J., Appl. Phys. Lett. 75, 1189 (1999).Google Scholar
5. Nishikawa, A., Kawasaki, T., Furukawa, N., Terai, Y., and Fujiwara, Y., Applied Physics Express 2 071004 (2009); A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, Appl. Phys. Lett. 97, 051113(2010); K. Lorenz, E. Alves, I. S. Roqan, K. P. O’Donnell, A. Nishikawa, Y. Fujiwara and M. Bocćkowski Appl. Phys. Lett. 97, 111911 (2010) Google Scholar
6. Wang, K., O’Donnell, K.P., Hourahine, B., Martin, R.W., Watson, I.M., Lorenz, K., Alves, E., Phys. Rev. B 80, 125206 (2009).Google Scholar
7. Roqan, I.S., O’Donnell, K.P., Martin, R.W., Edwards, P.R., Song, S.F., Vantomme, A., Lorenz, K., Alves, E., and Boćkowski, M., Phys. Rev. B 81, 085209 (2010).Google Scholar
8. Sanna, S., Schmidt, W.G., Frauenheim, T., Gerstmann, U., Phys. Rev. B 80, 104120 (2009).Google Scholar
9. Aliev, G.N., Zeng, S., Bingham, S.J., Wolverson, D., Davies, J.J., Wang, T., Parbrook, P.J., Phys. Rev. B 74, 235205 (2006)Google Scholar