Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T07:19:57.985Z Has data issue: false hasContentIssue false

The role of the diffusive protons in the gamma-ray emission of SNR RX J1713.7-3946

Published online by Cambridge University Press:  17 October 2017

Xiao Zhang
Affiliation:
Department of Astronomy, Nanjing University, 163 Xianlin Avenue, Najing 210023, China email: xiaozhang@nju.edu.cn
Yang Chen
Affiliation:
Department of Astronomy, Nanjing University, 163 Xianlin Avenue, Najing 210023, China email: xiaozhang@nju.edu.cn Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, Najing 210023, China email: ygchen@nju.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

RX J1713.7-3946 is a prototype in the γ-ray-bright supernova remnants (SNRs) and is in continuing debates on its hadronic versus leptonic origin of the γ-ray emission. We explore the role played by the diffusive relativistic protons that escape from the SNR shock wave in the γ-ray emission, apart from the emission of high energy particles from the inside of the SNR. In the scenario that the SNR shock propagates in a clumpy molecular cavity, we consider that the γ-ray emission from the inside of the SNR may either arise from the IC scattering or from the interaction between the trapped energetic protons and the shocked clumps. The dominant origin between them depends on the electron-to-proton number ratio. The surrounding molecular cavity wall is considered to also produce γ-ray emission due to the “illumination” by the diffusive protons that escaped from the shock wave during the expansion history. The broad-band spectrum can be well explained by this two-zone model, in which the γ-ray emission from the inside governs the TeV band, while the outer emission component substantially contributes to the GeV γ-rays. The two-zone model can also explain the TeV γ-ray radial brightness profile that significantly stretches beyond the nonthermal X-ray emitting region.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2011, ApJ, 734, 28 CrossRefGoogle Scholar
Acero, F., Ballet, J., Decourchelle, A., et al. 2009, A&A, 505, 157 Google Scholar
Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. 2006, A&A, 449, 223 Google Scholar
Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. 2007, A&A, 464, 235 Google Scholar
Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. 2011, A&A, 531, C1 Google Scholar
Aharonian, F. A. & Atoyan, A. M. 1996, A&A, 309, 917 Google Scholar
Aharonian, F. A., Akhperjanian, A. G., Aye, K.-M., et al. 2004, Nature, 432, 75 CrossRefGoogle Scholar
Berezhko, E. G. & Völk, H. J. 2008, A&A, 492, 695 Google Scholar
Berezinskii, V. S., Bulanov, S. V., Dogiel, V. A., & Ptuskin, V. S. 1990, Astrophysics of cosmic rays Google Scholar
Cassam-Chenaï, G., Decourchelle, A., Ballet, J., et al. 2004, A&A, 427, 199 Google Scholar
de Naurois, M. 2015, ArXiv e-prints: 1510.00635Google Scholar
Ellison, D. C., Slane, P., Patnaude, D. J., & Bykov, A. M. 2012, ApJ, 744, 39 Google Scholar
Enomoto, R., Tanimori, T., Naito, T., et al. 2002, Nature, 416, 823 CrossRefGoogle Scholar
Fan, Z. H., Liu, S. M., Yuan, Q., & Fletcher, L. 2010, A&A, 517, L4 Google Scholar
Federici, S., Pohl, M., Telezhinsky, I., Wilhelm, A., & Dwarkadas, V. V. 2015, A&A, 577, A12 Google Scholar
Finke, J. D. & Dermer, C. D. 2012, ApJ, 751, 65 CrossRefGoogle Scholar
Fukui, Y., Moriguchi, Y., Tamura, K., et al. 2003, PASJ, 55, L61 Google Scholar
Fukui, Y., Sano, H., Sato, J., et al. 2012, ApJ, 746, 82 Google Scholar
Gabici, S. & Aharonian, F. A. 2014, MNRAS, 445, L70 Google Scholar
Inoue, T., Yamazaki, R., Inutsuka, S.-i., & Fukui, Y. 2012, ApJ, 744, 71 Google Scholar
Koyama, K., Kinugasa, K., Matsuzaki, K., et al. 1997, PASJ, 49, L7 CrossRefGoogle Scholar
Lee, S.-H., Ellison, D. C., & Nagataki, S. 2012, ApJ, 750, 156 CrossRefGoogle Scholar
Li, H. & Chen, Y. 2010, MNRAS, 409, L35 Google Scholar
Li, H., Liu, S., & Chen, Y. 2011, ApJL, 742, L10 Google Scholar
Liu, S., Fan, Z.-H., Fryer, C. L., Wang, J.-M., & Li, H. 2008, ApJL, 683, L163 CrossRefGoogle Scholar
Moriguchi, Y., Tamura, K., Tawara, Y., et al. 2005, ApJ, 631, 947 Google Scholar
Morlino, G., Amato, E., & Blasi, P. 2009, MNRAS, 392, 240 CrossRefGoogle Scholar
Pfeffermann, E. & Aschenbach, B. 1996, in Roentgenstrahlung from the Universe, ed. Zimmermann, H. U., Trümper, J., & Yorke, H., 267268 Google Scholar
Sano, H., Sato, J., Horachi, H., et al. 2010, ApJ, 724, 59 CrossRefGoogle Scholar
Sano, H., Tanaka, T., Torii, K., et al. 2013, ApJ, 778, 59 Google Scholar
Slane, P., Gaensler, B. M., Dame, T. M., et al. 1999, ApJ, 525, 357 Google Scholar
Tanaka, T., Uchiyama, Y., Aharonian, F. A., et al. 2008, ApJ, 685, 988 Google Scholar
Wang, Z. R., Qu, Q.-Y., & Chen, Y. 1997, A&A, 318, L59 Google Scholar
Yuan, Q., Liu, S., Fan, Z., Bi, X., & Fryer, C. L. 2011, ApJ, 735, 120 CrossRefGoogle Scholar
Zirakashvili, V. N. & Aharonian, F. A. 2010, ApJ, 708, 965 Google Scholar