Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T17:06:07.426Z Has data issue: false hasContentIssue false

Synthesis of YBa2Cu3O7−δ with clean grain boundaries by a modified aerosol decomposition process

Published online by Cambridge University Press:  31 January 2011

Yuan-Liang Wang
Affiliation:
Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973-5000
Z.Q. Tan
Affiliation:
Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973-5000
Yimei Zhu
Affiliation:
Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973-5000
A.R. Moodenbaugh
Affiliation:
Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973-5000
M. Suenaga
Affiliation:
Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973-5000
Get access

Abstract

A modified aerosol decomposition method was developed for producing sintered YBa2Cu3O7−δ (1-2-3) pellets having sharp superconducting transition Tc's at ∼90 K, fine grain sizes, and clean grain boundaries. This method used “precursor” powders, which were produced with an aerosol flow reactor at 550 °C, instead of in situ produced 1-2-3 powders commonly processed at 880–1000 °C. As determined by x-ray absorption and powder diffraction studies, the 1-2-3 powders produced by the modified route contain less cation disorders than the in situ produced powders. The disorder is speculated to be the cause of Tc-suppression and broadening. It cannot be removed unless high sintering temperatures were used (>950 °C), which resulted in large grains and impurities and cracks at grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ekin, J.W., Braginski, A.I., Panson, A.J., Janocko, M.A., II, D.W. Capone, Zaluzec, N. J., Flandermeyer, B., Lima, O.F. de, Hong, M., Kwo, J., and Liou, S. H., J. Appl. Phys. 62, 4821 (1987).Google Scholar
2Camps, R.A., Evetts, J. E., Glowacki, B.A., Newcomb, S. B., and Stobbs, W.M., J. Mater. Res. 2, 750 (1987).CrossRefGoogle Scholar
3Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61, 219 (1988).CrossRefGoogle Scholar
4Kroeger, D. M., Choudhury, A., Brynestad, J., Williams, R. K., Padgett, R. A., and Coghlan, W. A., J. Appl. Phys. 64, 331 (1988).CrossRefGoogle Scholar
5Babcock, S.E. and Larbalestier, D.C., Appl. Phys. Lett. 55, 393 (1989).CrossRefGoogle Scholar
6Chisholm, M. F. and Pennycook, S. J., Nature 351, 47 (1991).CrossRefGoogle Scholar
7Zhu, Y., Wang, Z. L., and Suenaga, M., submitted to Philos. Mag.Google Scholar
8Aselage, T. and Keefer, K., J. Mater. Res. 3, 1279 (1988).CrossRefGoogle Scholar
9Richardson, T.J. and Jonghe, L. C. De, J. Mater. Res. 5, 2066 (1990).CrossRefGoogle Scholar
10Kodas, T. T., Engler, E. M., Lee, V. Y., Jacowitz, R., Baum, T. H., Roche, K., Parkin, S. S. P., Young, W., Hughes, K., Kleder, K., and Auser, W., Appl. Phys. Lett. 52, 1622 (1988).CrossRefGoogle Scholar
11Tohge, N., Tatsumisago, M., Minami, T., Okuyama, K., Adachi, M., and Kousaka, Y., Jpn. J. Appl. Phys. 27, L1086 (1988).CrossRefGoogle Scholar
12Tsuchida, K., Tsudo, H., and Kato, A., J. Mater. Sci. Lett. 8, 222 (1989).CrossRefGoogle Scholar
13Zachariah, M.R. and Huzarewicz, S., J. Mater. Res. 6, 264 (1991).CrossRefGoogle Scholar
14Shimazu, S., Uematsu, T., Matsuda, S., and Kuwasawa, Y., Mod. Phys. Lett. B2, 501 (1988).Google Scholar
15Kodas, T.T., Engler, E.M., and Lee, V.Y., Appl. Phys. Lett. 54, 1923 (1989).CrossRefGoogle Scholar
16Pebler, A. and Charles, R.G., Mater. Res. Bull. XXIII, 1337 (1988).Google Scholar
17Biswas, P., Zhou, D., Zitkovsky, I., Blue, C., and Boolchand, P., Mater. Lett. 8, 233 (1989).CrossRefGoogle Scholar
18Carim, A.H., Doherty, P., Kodas, T.T., and Ott, K., Mater. Lett. 8, 335 (1989).CrossRefGoogle Scholar
19Odier, P., Dubois, B., Gervais, M., and Douy, A., Mater. Res. Bull. XXIV, 11 (1989).Google Scholar
20Pebler, A. and Charles, R.G., Mater. Res. Bull. XXIV, 1069 (1989).Google Scholar
21Setaka, R., Komatsu, W., Shibata, T., and Nakajima, M., Jpn. J. Appl. Phys. 27, L2100 (1988).CrossRefGoogle Scholar
22Ito, T., Kimura, Y., and Hiraki, A., Jpn. J. Appl. Phys. 30, L1253 (1991).Google Scholar
23Coppa, N.V., Bura, A., Schwegler, J.W., Salomon, R.E., Myer, G.H., and Crow, J. E., in Better Ceramics Through Chemistry IV, edited by Zelinski, B.J.J., Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990).Google Scholar
24Lay, K. W., J. Am. Ceram. Soc. 72, 696 (1989).CrossRefGoogle Scholar
25Shaw, T. M., Dimos, D., Batson, P. E., Schrott, A. G., Clarke, D. R., and Duncombe, P.R., J. Mater. Res. 5, 1176 (1990).CrossRefGoogle Scholar
26Lindemer, T.B., Hunley, J.F., Gates, J.E., Sutton, A.L. Jr., Brynestad, J., Hubbard, C. R., and Gallagher, P. K., J. Am. Ceram. Soc. 72, 1775 (1989).CrossRefGoogle Scholar
27Ward, T.L., Kodas, T.T., Carim, A.H., Kroeger, D.M., and Hsu, H., J. Mater. Res. 7, 827 (1992).CrossRefGoogle Scholar
28Orehotsky, J., Garber, M., Xu, Youwen, Wang, Y. L., and Suenaga, M., J. Appl. Phys. 67, 1433 (1990).Google Scholar
29Lindemer, T. B., Hubbard, C. R., and Brynestad, J., Physica C 167, 312 (1990).Google Scholar
30Chadda, S., Ward, T.L., Carim, A., Kodas, T.T., Ott, K., and Kroeger, D., J. Aerosol Sci. 22, 601 (1991).CrossRefGoogle Scholar
31dc magnetization of a sintered 1–2–3 is composed of the contributions from the grain boundary regions and from the grains.32 This figure shows only the magnetization from the boundary region after subtracting the contribution from the grains to emphasize the intergranular coupling strength. The specimen is completely diamagnetic until the applied field exceeds ̃15 Oe. Beyond this point the magnetic flux lines penetrate the boundary region of the specimen, and the magnetic properties of the boundary region behave as a type II superconductor even though the region is a Josephson junction coupled system. This part of the work will be discussed in detail elsewhere.Google Scholar
32Clem, J. R., Physica C 50, 153 (1988).Google Scholar
33Bean, C. P., Phys. Rev. Lett. 8, 250 (1962).CrossRefGoogle Scholar
34Nakahara, S., Fisanick, G. J., Yan, M. F., Dover, R. B. van, Boone, T., and Moore, R., J. Cryst. Growth 85, 639 (1987).CrossRefGoogle Scholar
35Clarke, D. R., Shaw, T. M., and Dimos, D., J. Am. Ceram. Soc. 72, 1103 (1989).Google Scholar
36Shaw, T. M., Shinde, S. L., Dimos, D., Cook, R. F., Duncombe, P. R., and Kroll, C., J. Mater. Res. 4, 248 (1989).CrossRefGoogle Scholar
37Severin, J. W. and DeWith, G., Brit. Ceram. Proc. 40, 249 (1988).Google Scholar
38Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (John Wiley and Sons, New York, 1976), p. 487.Google Scholar
39Zhu, Y., Zhang, H., Wang, H., and Suenaga, M., J. Mater. Res. 6, 2507 (1991).CrossRefGoogle Scholar
40Babcock, S.E., Cai, X.Y., Kaiser, D. L., and Larbalestier, D. C., Nature 347, 167 (1990).CrossRefGoogle Scholar
41Verhoeven, J. D., Bevolo, A. J., McCallum, R. W., Gibson, E. D., and Noack, M. A., Appl. Phys. Lett. 52, 745 (1988).Google Scholar
42Gudmundsson, B., Wang, H., Neiser, R.A., Katz, B., Herman, H., and Suenaga, M., J. Appl. Phys. 67, 2653 (1990).CrossRefGoogle Scholar
43Kajitani, T., Oh-Ishi, K., Kikuchi, M., Syono, Y., and Hirabayashi, M., Jpn. J. Appl. Phys. 26, LI144 (1987).Google Scholar
44Caignaert, V., Hervieu, M., Wang, J., Desgardin, G., Raveau, B., Boterel, F., and Haussonne, J. M., Physica C 170, 139 (1990).Google Scholar
45Yang, C.Y., Heald, S.M., Tranquada, J. M., Moodenbaugh, A. R., and Xu, Youwen, Phys. Rev. B 38, 6568 (1988).Google Scholar
46Crozier, E. D., Alberding, N., Bauchspiess, K. R., Seary, A. J., and Gygax, S., Phys. Rev. B 36, 8288 (1987).Google Scholar