Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T20:25:04.599Z Has data issue: false hasContentIssue false

Amorphous zinc-tin oxide thin films fabricated by pulsed laser deposition at room temperature

Published online by Cambridge University Press:  29 January 2014

P. Schlupp
Affiliation:
Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig, Germany
H. von Wenckstern
Affiliation:
Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig, Germany
M. Grundmann
Affiliation:
Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig, Germany
Get access

Abstract

For a cost-efficient fabrication of homogeneous oxide thin films the usage of amorphous materials is favorable. They can be deposited at room temperature (RT) and represent an interesting alternative to amorphous silicon in electronics. Zinc-tin oxide is a promising n-type channel material for thin film transistors and consists of abundant elements, only, in contrast to the well-explored indium gallium zinc oxide. Here, the electrical and optical properties of room temperature deposited ZTO thin films are discussed. These films were fabricated via pulsed-laser deposition on glass substrates by ablating a ceramic target composed of ZnO and SnO2 in a 1:2 ratio. The resistivity has been controlled over seven orders of magnitude via the oxygen growth pressure. Further, the optical transmittance tends to be higher for higher oxygen growth pressures.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jayaraj, Madambi K., Saji, Kachirayil J., Nomura, Kenji, Kamiya, Toshio and Hosono, Hideo. J. Vac. Sci. Technol. B 26, 495 (2008)CrossRefGoogle Scholar
Chiang, H. Q., Wager, J. F., Hofman, R. L., Jeong, J., and Keszler, D., Appl. Phys. Lett. 86, 013503 (2004)CrossRefGoogle Scholar
Heo, Jaeyeong, Kim, Sang Bok, and Gordon, Roy G., Appl. Phys. Lett. 101, 113507 (2012)CrossRefGoogle Scholar
Wenckstern, H. von, Brandt, M., Zimmermann, G., Lenzner, J., Lorenz, M. and Grundmann, M.. Mater. Res. Soc. Symp. Proc. 957, 0957–K03-02 (2007)Google Scholar
Young, D. L., Williamson, D. L. and Coutts, T. J.. J. Appl. Phys. 91, 1464 (2002).10.1063/1.1429793CrossRefGoogle Scholar
Hosono, H., Kikuchi, N., Ueda, N. and Kawazoe, H., J. Non-Cryst. Solids 198-200, 165 (1996)CrossRefGoogle Scholar