Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T19:58:33.303Z Has data issue: false hasContentIssue false

Modeling Dopant Diffusion in SiGe and SiGeC alloys

Published online by Cambridge University Press:  17 March 2011

Ardechir Pakfar
Affiliation:
STMicroelectronics, 850 rue Jean Monnet F-38926 Crolles cedex, France CEA-DRT-LETI/DTS, 17 rue des Martyrs, F-38054 Grenoble cedex 09, France
Philippe Holliger
Affiliation:
CEA-DRT-LETI/DTS, 17 rue des Martyrs, F-38054 Grenoble cedex 09, France
Alain Poncet
Affiliation:
LPM - INSA de Lyon, 20 av. Albert Einstein, F-69621 Villeurbanne cedex, France
Cyril Fellous
Affiliation:
STMicroelectronics, 850 rue Jean Monnet F-38926 Crolles cedex, France
Didier Dutartre
Affiliation:
STMicroelectronics, 850 rue Jean Monnet F-38926 Crolles cedex, France
Thierry Schwartzmann
Affiliation:
STMicroelectronics, 850 rue Jean Monnet F-38926 Crolles cedex, France
Hervé Jaouen
Affiliation:
STMicroelectronics, 850 rue Jean Monnet F-38926 Crolles cedex, France
Get access

Abstract

A unified diffusion model is developed, valid for all usual substitutional atoms in SiGe and strained SiGeC layers, in accordance with all published experimental data and predicting the enhancement of Arsenic diffusion in SiGe and SiGeC strained layers. Using a new SIMS methodology, the study of As intrinsic diffusion in SiGe and SiGeC layers is performed, at low concentration and under equilibrium annealing conditions. Arsenic diffusivity in fully-strained SiGe and SiGeC layers on Si substrates was successfully compared to the unified diffusion model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pakfar, A., PhD. Thesis, Institut National Sciences Appliquées, Lyon, 2003.Google Scholar
2. Willoughby, A. F. W., Bonar, J. M., and Paine, A. D. N., Mater. Res. Soc. Symp. Proc. 568, 253 (1999).Google Scholar
3. Chen, C.-H., Goesele, U. M., and Tan, T. Y., Appl. Phys. A 68, 9 (1999); 69, 313 (1999).Google Scholar
4. Chen, C.-H., Goesele, U. M., and Tan, T. Y., Appl. Phys. A 68, 19 (1999).Google Scholar
5. Philibert, J., in Atom movement, diffusion and mass transport in solids, edited by Ulis, Les, France: Les éditions de physique, Paris, France,1991.Google Scholar
6. Christensen, J. S., Radamson, H. H., Kuznetsov, A. Yu., and Svensson, B. G., J. Appl. Sci. 94(10), 6533 (2003).Google Scholar
7. Hu, S. M., Phys. Rev. B 45(8), 4498 (1992).Google Scholar
8. Pakfar, A., Holliger, P., Fellous, C., Dutartre, D., Poncet, A., Schwartzmann, T., and Jaouen, H., presented at the 2004 ISTDM conference, Nagoya, Japan, 2004 (unpublished).Google Scholar
9. Larsen, A. Nylandsted, and Kringhoj, P., Appl. Phys. Lett. 68(19), 2684 (1996)Google Scholar
10. Zangenberg, N. R., Hansen, J. Lundsgaard, Fage-Pedersen, J., and Larsen, A. Nylandsted. Phys. Rev. Lett. 87(12), 125901 (2001).Google Scholar
11. Kuo, P., Hoyt, J. L., Gibbons, J. F., Turner, J. E., and Lefforge, D., Mater. Res. Soc. Symp. Proc. 379, 373 (1995).Google Scholar
12. Lever, R. F. R. F., , Bonar, J. M., and Willoughby, A. F. W., J. Appl. Phys. 83(4), 1988 (1998).Google Scholar
13. Hattendorf, J., Zeitz, W.-D., Abrosimov, N.V., and Schroeder, W, Physica B 308–310, 535 (2001); 340-342, 858 (2003).Google Scholar
14. Li, H.-G., Kirichenko, T. A., Kohli, P., Banerjee, S. K., Graetz, E., Tichy, R., and Zeitzoff, P., IEEE Elect. Dev. Lett. 23(11), 646 (2002)Google Scholar
15. Aziz, M. J., Mater. Sci. Semicon. Process. 4, 397 (2001).Google Scholar
16. Cowern, N. E. B., Zalm, P. C., Sluis, P. van der, Gravesteijn, D. J., and Boer, W. B. de, Phys. Rev. Lett. 72(16), 2585 (1994).Google Scholar
17. Paine, A. D. N., PhD. Thesis, Southampton University, United Kingdom, 1998.Google Scholar
18. Kuznetsov, A. Yu., Grahn, J., Cardenas, J., Svensson, B.G., Hansen, J. Lundsgaard, and Larsen, A. Nylandsted, Phys. Rev B 58(20),13355 (1998)Google Scholar
19. Kringhoj, P., Larsen, A. Nylandsted, and Shirayev, S. Yu., Phys. Rev. Lett. 76(18), 3372 (1996).Google Scholar
20. Kermarrec, O., Institut National de Polytechnique de Grenoble, France, 2003.Google Scholar
21. Scholtz, R. F., Werner, P., Goesele, U. M. et al. Appl. Phys. Lett. 74(3), 392 (1999).Google Scholar
22. Pakfar, A., Holliger, P., Poncet, A., Schwartzmann, T., and Jaouen, H.. Submitted to the 2004 SISPAD conference, Munich, Germany, 2-4 September 2004.Google Scholar
23. Eguchi, S., Leitz, C. W., Fitzgerald, E. A., and Hoyt, J. L., Mater. Res. Soc. Symp. Proc. 686, 33 (2002).Google Scholar
24. Mitchell, M. J., Ashburn, P., Bonar, J. M., and Hemment, P. L., J. Appl. Phys. 93(8), 4526 (2003).Google Scholar
25. Laitinen, P., Riihimaki, I., Raisanen, J. et al. Phys. Rev. B 68, 155209 (2003).Google Scholar
26. Larsen, A. Nylandsted, Larsen, K. Kyllesbech, Andersen, P.E., and Svensson, B.G., J. Appl. Phys. 73(2), 691 (1993).Google Scholar
27. Holliger, P., Laugier, F., and Dupuy, J. C., Surf. Interf. Anal. 34(1), 472 (2002).Google Scholar